Time transformation of local activation times
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
embodiment 10
[0108]Referring to FIG. 1, an embodiment 10 of the method includes a flow loop of method steps which is initiated by a request 12 to map a point, and each time a mapping-point request 12 is generated, the method proceeds through the steps shown in FIG. 1. The flow chart element labeled with reference number 14 indicates that the flow loop waits to receive request 12. During a procedure in which the method is used, an electrophysiologist (EP doctor) is maneuvering an electrode-tipped catheter (mapping catheter) through and around the chambers, arteries and veins of a patient's heart. The electrode on this maneuvered catheter provides the mapping-channel signal. When the EP doctor determines that the maneuvered catheter electrode is in a desired position, the EP doctor activates a signal as request 12 to map a point. A plurality of map points constitute the map.
[0109]Generating the map during this procedure involves time measurements made between the MCCE signals of the mapping electr...
embodiment 100
[0157]FIGS. 7A and 7B together are a schematic block diagram of an embodiment 100 of the process of determining local activation time (LAT) for a single mapping point in the method of measuring parameters of MCCE signals. FIG. 7A illustrates three MCCE signals (6-sec epochs) on which computations are performed, as has been described above, in order to provide results which are used in the determination of LAT for a single mapping point. A ventricular-channel epoch 102 and a reference-channel epoch 108 are coincident in time, and a mapping-channel 2-sec epoch 114 is coincident with the last 2 seconds of epochs 102 and 108. FIG. 7A includes a legend which defines the terminology used in FIGS. 7A and 7B.
[0158]In method step 104, ventricular-channel epoch 102 is processed with the steps of FIG. 4A and produces a set of ventricular-channel activation times tV-ACT and estimates of signal quality SQ and signal irregularity SI for epoch 102. The ventricular-channel activation times tV-ACT a...
embodiment 122
[0166]FIG. 7C is a schematic block diagram of an alternative embodiment 122′ of the process by which an LAT value is determined for a single mapping point. (Embodiment 122′ of FIG. 7C is an alternative embodiment to method steps 122 and 124 of FIG. 7B.) FIG. 7C will be described later in this document, after the example of FIGS. 8A-8D is described.
[0167]FIG. 8A through FIG. 8D together illustrate in more detail the process of determining LAT for a single mapping-channel electrode location. FIG. 8A is a set of exemplary MCCE signal plots. At the top of FIG. 8A is a six-second epoch of an ECG reference-channel signal 108. At the bottom of FIG. 8A is a six-second epoch of an ECG ventricular-channel signal 102 time-coincident with reference-channel signal 108. In the middle and to the right of FIG. 8A is a 2-second epoch of an MCCE mapping-channel signal 114 time-coincident with the final 2 seconds of reference-channel signal 108 and ventricular-channel signal 102. (Note that in FIG. 8A...
PUM
Login to View More Abstract
Description
Claims
Application Information
Login to View More - R&D
- Intellectual Property
- Life Sciences
- Materials
- Tech Scout
- Unparalleled Data Quality
- Higher Quality Content
- 60% Fewer Hallucinations
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2025 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com
