Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

186 results about "Heart muscles" patented technology

Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support

Methods and systems for endovascular, endocardiac, or endoluminal approaches to a patient's heart to perform surgical procedures that may be performed or used without requiring extracorporeal cardiopulmonary bypass. Furthermore, these procedures can be performed through a relatively small number of small incisions. These procedures may illustratively include heart valve implantation, heart valve repair, resection of a diseased heart valve, replacement of a heart valve, repair of a ventricular aneurysm, repair of an arrhythmia, repair of an aortic dissection, etc. Such minimally invasive procedures are preferably performed transapically (i.e., through the heart muscle at its left or right ventricular apex).
Owner:EDWARDS LIFESCI CARDIAQ

Heart valve annulus device and method of using same

InactiveUS6893459B1Minimize time-consume processShorten the timeHeart valvesProsthesisCardiac muscle
A method of implanting a universal heart valve prosthetic anchor device for receipt of a mating occluder. The anchor device includes a pair of rings axially shiftable from a retracted to a deployed position. The anchor device further formed with a plurality of flexible retaining elements received within the anchor rings and which are capable of laterally downwardly outward movement upon deployment of the rings. The deployment tool includes an elongated tubular housing mounted at its distal end with radially outwardly diverging tines for reversible engagement with the anchoring rings. A wire is telescoped through the tines for actuation of the fork thereby causing deployment of the anchoring rings. Once placed at the desired location within the heart muscle, the deployment tool is actuated causing the anchor device to shift axially thereby causing the retainers to deploy outwardly and upwardly to secure the valve anchor in place at the heart valve annulus shelf.
Owner:VENTURE LENDING & LEASING IV

Systems for heart treatment

Described are devices and methods for treating degenerative, congestive heart disease and related valvular dysfunction. Percutaneous and minimally invasive surgical tensioning structures offer devices that mitigate changes in the ventricular structure (i.e., remodeling) and deterioration of global left ventricular performance related to tissue damage precipitating from ischemia, acute myocardial infarction (AMI) or other abnormalities. These tensioning structures can be implanted within various major coronary blood-carrying conduit structures (arteries, veins and branching vessels), into or through myocardium, or into engagement with other anatomic structures that impact cardiac output to provide tensile support to the heart muscle wall which resists diastolic filling pressure while simultaneously providing a compressive force to the muscle wall to limit, compensate or provide therapeutic treatment for congestive heart failure and / or to reverse the remodeling that produces an enlarged heart.
Owner:EXTENSIA MEDICAL

System for cardiac procedures

A system for accessing a patient's cardiac anatomy which includes an endovascular aortic partitioning device that separates the coronary arteries and the heart from the rest of the patient's arterial system. The endovascular device for partitioning a patient's ascending aorta comprises a flexible shaft having a distal end, a proximal end, and a first inner lumen therebetween with an opening at the distal end. The shaft may have a preshaped distal portion with a curvature generally corresponding to the curvature of the patient's aortic arch. An expandable means, e.g. a balloon, is disposed near the distal end of the shaft proximal to the opening in the first inner lumen for occluding the ascending aorta so as to block substantially all blood flow therethrough for a plurality of cardiac cycles, while the patient is supported by cardiopulmonary bypass. The endovascular aortic partitioning device may be coupled to an arterial bypass cannula for delivering oxygenated blood to the patient's arterial system. The heart muscle or myocardium is paralyzed by the retrograde delivery of a cardioplegic fluid to the myocardium through patient's coronary sinus and coronary veins, or by antegrade delivery of cardioplegic fluid through a lumen in the endovascular aortic partitioning device to infuse cardioplegic fluid into the coronary arteries. The pulmonary trunk may be vented by withdrawing liquid from the trunk through an inner lumen of an elongated catheter. The cardiac accessing system is particularly suitable for removing the aortic valve and replacing the removed valve with a prosthetic valve.
Owner:EDWARDS LIFESCIENCES LLC

Passive girdle for heart ventricle for therapeutic aid to patients having ventricular dilatation

InactiveUS6224540B1Increased oxygen consumptionLarge increases in the tension-time integralHeart valvesControl devicesVentricular dilatationCardiac muscle
A passive girdle is wrapped around a heart muscle which has dilatation of a ventricle to conform to the size and shape of the heart and to constrain the dilatation during diastole. The girdle is formed of a material and structure that does not expand away from the heart but may, over an extended period of time be decreased in size as dilatation decreases.
Owner:ABIOMED

Systems for heart treatment

InactiveUS20050197692A1Decreasing wall stressReinforce wallSuture equipmentsElectrotherapyLeft ventricular sizeTherapeutic treatment
Described are devices and methods for treating degenerative, congestive heart disease and related valvular dysfunction. Percutaneous and minimally invasive surgical tensioning structures offer devices that mitigate changes in the ventricular structure (i.e., remodeling) and deterioration of global left ventricular performance related to tissue damage precipitating from ischemia, acute myocardial infarction (AMI) or other abnormalities. These tensioning structures can be implanted within various major coronary blood-carrying conduit structures (arteries, veins and branching vessels), into or through myocardium, or into engagement with other anatomic structures that impact cardiac output to provide tensile support to the heart muscle wall which resists diastolic filling pressure while simultaneously providing a compressive force to the muscle wall to limit, compensate or provide therapeutic treatment for congestive heart failure and / or to reverse the remodeling that produces an enlarged heart.
Owner:EXTENSIA MEDICAL

Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support

Methods and systems for endovascular, endocardiac, or endoluminal approaches to a patient's heart to perform surgical procedures that may be performed or used without requiring extracorporeal cardiopulmonary bypass. Furthermore, these procedures can be performed through a relatively small number of small incisions. These procedures may illustratively include heart valve implantation, heart valve repair, resection of a diseased heart valve, replacement of a heart valve, repair of a ventricular aneurysm, repair of an arrhythmia, repair of an aortic dissection, etc. Such minimally invasive procedures are preferably performed transapically (i.e., through the heart muscle at its left or right ventricular apex).
Owner:EDWARDS LIFESCI CARDIAQ

System for improving cardiac function

A system for improving cardiac function is provided. A foldable and expandable frame having at least one anchoring formation is attached to an elongate manipulator and placed in a catheter tube while folded. The tube is inserted into a left ventricle of a heart where the frame is ejected from the tube and expands in the left ventricle. Movements of the elongate manipulator cause the anchor to penetrate the heart muscle and the elongate manipulator to release the frame. The installed frame minimizes the effects of an akinetic portion of the heart forming an aneurysmic bulge.
Owner:EDWARDS LIFESCIENCES CORP

Passive cardiac assistance device

InactiveUS6508756B1Large increases in the tension-time integralIncrease consumptionHeart valvesControl devicesLong axisCardiac muscle
Artificial implantable active and passive girdles include a heart assist system with an artificial myocardium employing a number of flexible, non-distensible tubes with the walls along their long axes connected in series to form a cuff and a passive girdle is wrapped around a heart muscle which has dilatation of a ventricle to conform to the size and shape of the heart and to constrain the dilatation during diastole. The passive girdle is formed of a material and structure that does not expand away from the heart but may, over an extended period of time be decreased in size as dilatation decreases.
Owner:ABIOMED

System for improving cardiac function

A system for improving cardiac function is provided. A foldable and expandable frame having at least one anchoring formation is attached to an elongate manipulator and placed in a catheter tube while folded. The tube is inserted into a left ventricle of a heart where the frame is ejected from the tube and expands in the left ventricle. Movements of the elongate manipulator cause the anchor to penetrate the heart muscle and the elongate manipulator to release the frame. The installed frame minimizes the effects of an akinetic portion of the heart forming an aneurysmic bulge.
Owner:EDWARDS LIFESCIENCES CORP

Cardiac devices and methods for minimally invasive repair of ischemic mitral regurgitation

Novel apparatus and minimally invasive methods to treat atrioventricular valve regurgitation that is a result of tethering of chordae attaching atrioventricular valve leaflets to muscles of the heart, such as papillary muscles and muscles in the heart wall, thereby restricting the closure of the leaflets. Catheter embodiments for delivering and positioning chordal severing and elongating instruments are described.
Owner:THE GENERAL HOSPITAL CORP

Method for automated analysis of apical four-chamber images of the heart

InactiveUS6708055B2Maximizes long axis lengthImage enhancementImage analysisBody organsCardiac muscle
A method for quantitatively analyzing digital images of approximately elliptical body organs, and in particular, echocardiographic images is provided. In particular, methods are disclosed for obtaining short-axis apical four-chamber views of a heart, and particularly for obtaining high-quality automated images of particular regions of the heart muscle, as viewed along its long axis.
Owner:FLORIDA UNIV OF A FLORIDA

Method of treating the heart

Devices and methods described for delivery of therapeutic substances to a depth within the heart muscle via the venous side of the heart, with a primary focus on delivery through the coronary sinus. The devices and methods may be combined with percutaneous access catheters in order to provide for right heart delivery of therapeutic agents.
Owner:BIOCARDIA

Method for automated analysis of apical four-chamber images of the heart

A method for quantitatively analyzing digital images of approximately elliptical body organs, and in particular, echocardiographic images is provided. In particular, methods are disclosed for obtaining short-axis apical four-chamber views of a heart, and particularly for obtaining high-quality automated images of particular regions of the heart muscle, as viewed along its long axis.
Owner:FLORIDA UNIV OF A FLORIDA

Method and apparatus for impedance signal localizations from implanted devices

A patient monitoring system including an implantable medical device for monitoring a plurality of physiological factors contributing to physiological conditions of a patient's heart by measuring a first impedance affected by the plurality of physiological factors, across one of a plurality of vectors, and a second impedance affected by the plurality of physiological factors, across a second one of the plurality of vectors subsequent to determining the first impedance. A change in impedance is determined based upon the first impedance and the second impedance measurements. Using an equation ΔZVX=αAVX*QA+αBVX*QB, where QA is a fractional resistivity change of a first contributing physiological impedance factor, QB is a fractional resistivity change of a second physiological impedance factor, αAVX is an impedance sensitivity factor for physiological impedance factor QA, and αBVX is an impedance sensitivity factor for physiological impedance factor QB, the value of one of the contributing physiological impedance factors is determined. The contributing physiological impedance factors may include lung resistivity, blood resistivity, heart muscle resistivity, skeletal muscle resistivity, heart volume and lung volume.
Owner:MEDTRONIC INC

Cardiac devices and methods for minimally invasive repair of ischemic mitral regurgitation

Novel apparatus and minimally invasive methods to treat atrioventricular valve regurgitation that is a result of tethering of chordae attaching atrioventricular valve leaflets to muscles of the heart, such as papillary muscles and muscles in the heart wall, thereby restricting the closure of the leaflets. Catheter embodiments for delivering and positioning chordal severing and elongating instruments are described.
Owner:THE GENERAL HOSPITAL CORP

Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery

Devices for stabilizing tissue during a surgical procedure. The beating heart may be stabilized during a surgical procedure on the heart, using a described stabilizing device. In one example, a stabilizing device is introduced through an opening in the chest and brought into contact with the beating heart. By contacting the heart with the device and by exerting a stabilizing force on the device, the motion of the heart caused by the contraction of the heart muscles id effectively eliminated such that the heart is stabilized and the site of the surgery moves only minimally if at all.
Owner:MAQUET CARDIOVASCULAR LLC

Dedicated display for processing and analyzing multi-modality cardiac data

For diagnosis and treatment of cardiac disease, images of the heart muscle and coronary vessels are captured using different medical imaging modalities; e.g., single photon emission computed tomography (SPECT), positron emission tomography (PET), electron-beam X-ray computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound (US). For visualizing the multi-modal image data, the data is presented using a technique of volume rendering, which allows users to visually analyze both functional and anatomical cardiac data simultaneously. The display is also capable of showing additional information related to the heart muscle, such as coronary vessels. Users can interactively control the viewing angle based on the spatial distribution of the quantified cardiac phenomena or atherosclerotic lesions.
Owner:SIEMENS MEDICAL SOLUTIONS USA INC

Cardiac stimulation apparatus and method for the control of hypertension

The method calls for the periodic electrical stimulation of the heart muscle to alter the ejection profile of the heart thus reducing the observed blood pressure of the patient. The therapy may be invoked by an implantable blood pressure sensor associated with a pacemaker like device.
Owner:BACKBEAT MEDICAL

Systems and methods for improving cardiac function

A system for improving cardiac function is provided. A foldable and expandable frame having at least one anchoring formation is attached to an elongate manipulator and placed in a catheter tube while folded. The tube is inserted into a left ventricle of a heart where the frame is ejected from the tube and expands in the left ventricle. Movements of the elongate manipulator cause the anchor to penetrate the heart muscle and the elongate manipulator to release the frame. The installed frame minimizes the effects of an akinetic portion of the heart forming an aneurysmic bulge. Devices and methods are described herein which are directed to the treatment of a patient's heart having, or one which is susceptible to heart failure, to improve diastolic function.
Owner:EDWARDS LIFESCIENCES CORP

Cinching of dilated heart muscle

ActiveUS20190151093A1Reducing direct distanceReduce distanceHeart valvesHeart chamberCardiac muscle
Methods, systems, and apparatuses for treating a heart are provided. Methods can include obtaining and using an implant. One or more catheters can be used to properly position and attach the implant in a desired location in a chamber of the heart, for example, on a ventricular wall of the left ventricle between one or more papillary muscles of the left ventricle and the annulus. Then a distance along the implant or a region of the heart, for example, between the papillary muscle and the annulus, can be reduced by contracting the implant along its longitudinal axis by applying tension to a contraction member of the implant. Other embodiments are described.
Owner:VALTECH CARDIO LTD

Passive cardiac assistance device

InactiveUS20030088151A1Large increases in the tension-time integralIncrease consumptionHeart valvesControl devicesLong axisCardiac muscle
Artificial implantable active and passive girdles include a heart assist system with an artificial myocardium employing a number of flexible, non-distensible tubes with the walls along their long axes connected in series to form a cuff and a passive girdle is wrapped around a heart muscle which has dilatation of a ventricle to conform to the size and shape of the heart and to constrain the dilatation during diastole. The passive girdle is formed of a material and structure that does not expand away from the heart but may, over an extended period of time be decreased in size as dilatation decreases.
Owner:ABIOMED

Depositing radiation in heart muscle under ultrasound guidance

InactiveUS20080177279A1Improved radiosurgical treatment of tissueReduce arrhythmiaElectrocardiographySurgical navigation systemsData setUltrasonic sensor
A method and system are disclosed for radiosurgical treatment of moving tissues of the heart, including acquiring at least one volume of the tissue and acquiring at least one ultrasound data set, image or volume of the tissue using an ultrasound transducer disposed at a position. A similarity measure is computed between the ultrasound image or volume and the acquired volume or a simulated ultrasound data set, image or volume. A robot is configured in response to the similarity measure and the position of the transducer, and a radiation beam is fired from the configured robot.
Owner:CYBERHEART

Method for Depositing Radiation in Heart Muscle

Radiosurgical treatment of tissues of the heart to mitigate arrhythmias such as atrial fibrillation or the like. Radiosurgical targeting of the relatively rapid movement of heart tissues may be enhanced by generating a moving model volume using a time-sequence of three dimensional acquired tissue volumes. A digitally reconstructed radiograph (DRR) may be generated from the model at a desired cardiac and / or respiration motion phase and compared to an X-ray or the like taken immediately before or during treatment. When a series of radiation beams will be directed to a heart tissue to alleviate an arrhythmia, the treatment system may alter the radiation beam series in response to the type of the arrhythmia.
Owner:CYBERHEART

Progressive biventricular diastolic support device

A device is proposed to progressively reduce the hemodynamic cardiac symptoms of congestive heart failure as well as those induced by dilated cardiomyopathies. This device affords progressive diastolic ventricular control by offering a method for percutaneous access and adjustments of its gas filled bladders surrounding the heart. After opening the pericardium, the device is not attached to the heart muscle but may be anchored to the pericardial sac. The device actually extends primarily around the heart from below the atrio-ventricular canal to the cardiac apex. Between the device exterior, made of non-elastic material and the epicardium, two independent elastic bladders or chambers provide variable compressive diastolic support to the right and left ventricles, while allowing adequate blood flow to the anterior and posterior descending epicardial branches of the coronary arteries and veins. Progressive hemodynamic increases in diastolic pressures for the right and left ventricles can be individually and repeatedly monitored by pressure gauges and an inert gas separately injected or removed in the enclosed chest through self-sealing access ports. These ports are subcutaneously implanted in the left anterior axillary line and connected by thin tubes across the 4th or 5th intercostal spaces to the pericardial bladders or chambers described above.
Owner:ROBERTSON JR ABEL L

Preventing and/or treating cardiovascular disease and/or associated heart failure

Methods are provided for reducing copper values for, by way of example, treating, preventing or ameliorating tissue damage such as, for example, tissue damage that may be caused by (i) disorders of the heart muscle (for example, cardiomyopathy or myocarditis) such as idiopathic cardiomyopathy, metabolic cardiomyopathy which includes diabetic cardiomyopathy, alcoholic cardiomyopathy, drug-induced cardiomyopathy, ischemic cardiomyopathy, and hypertensive cardiomyopathy, (ii) atheromatous disorders of the major blood vessels (macrovascular disease) such as the aorta, the coronary arteries, the carotid arteries, the cerebrovascular arteries, the renal arteries, the iliac arteries, the femoral arteries, and the popliteal arteries, (iii) toxic, drug-induced, and metabolic (including hypertensive and / or diabetic disorders of small blood vessels (microvascular disease) such as the retinal arterioles, the glomerular arterioles, the vasa nervorum, cardiac arterioles, and associated capillary beds of the eye, the kidney, the heart, and the central and peripheral nervous systems, (iv) plaque rupture of atheromatous lesions of major blood vessels such as the aorta, the coronary arteries, the carotid arteries, the cerebrovascular arteries, the renal arteries, the iliac arteries, the fermoral arteries and the popliteal arteries, (v) diabetes or the complications of diabetes.
Owner:PHILERA NEW ZEALAND +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products