Vehicle control

Active Publication Date: 2018-05-08
JAGUAR LAND ROVER LTD
View PDF69 Cites 5 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0008]The present invention aims to provide a vehicle control system which can be operated so as to provide improved control of the vehicle on a broad

Problems solved by technology

Unless the driver is very experienced, this can become complicated and confusing.
Unfortunately, the operating characteristics of such an integrated control system does not provide the driver with the ability to provide dire

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Vehicle control
  • Vehicle control
  • Vehicle control

Examples

Experimental program
Comparison scheme
Effect test

Example

[0071]Referring to FIG. 1, according to a first embodiment of the invention a vehicle 10 has four wheels 11, 12, 13, 14 and a powertrain 16 for providing driving torque to the wheels. The powertrain 16 comprises an engine 18, an automatic transmission 20 which transmits drive torque at any of a number of transmission ratios, via a transfer box 21 to the input side of a center differential 22. Front and rear differentials 24, 26 receive torque from the center differential 22 and transmit it to the front wheels 11, 12 and rear wheels 13, 14 respectively. An engine controller 28 in the form of an engine management system controls operation of the engine 18 so as to control its speed and output power and torque in response to inputs from the driver from a throttle pedal 27, the position of which is measured with a throttle pedal position sensor 29. A transmission controller 30 controls the transmission ratio of the automatic transmission 20, and the selection of high or low range in the...

Example

[0101]A second embodiment of the invention will now be described. In this embodiment all of the subsystem configurations are substantially the same as in the first embodiment, the second embodiment differing only in the manner in which the subsystems configurations are controlled. Some of the controlled functions described above are not altered by the driving mode selected, and one further function, a hill descent function, is included in the brake controller 62, as will be described in more detail below. The second embodiment will therefore also be described with reference to FIGS. 1 to 4.

[0102]In the second embodiment the functions which are controlled by the vehicle mode controller 98 are the throttle pedal characteristic, the gear changes in the transmission 20, the locking torque of the center and rear differentials 22, 26, the traction control function, the yaw control function provided by the D.S.C. system, the air suspension ride height, the suspension cross linking, and the...

Example

[0112]Referring to FIG. 13, in a third embodiment of the invention the driving mode in which the vehicle operates is determined by two separate inputs. One input, a rotary terrain knob 100, allows the user to input the type of terrain over which the vehicle is being driven. The other input, a rotary “mode of use” knob 102 allows the user to input the mode in which the vehicle is to be used. This can include vehicle modes relating to the manner in which the vehicle is to respond to the driver's inputs, such as a sport mode or an economy mode, as well as modes relating to the state of the vehicle, such as a towing mode suitable for towing a trailer, and a laden mode for when the vehicle is carrying a particularly heavy load. In this example the vehicle “mode of use” knob allows selection of normal, sport, and towing vehicle driving modes. The sport driving mode is adapted for use when the vehicle is being driven in a “sporty” manner, characterized for example by one or more of: rapid ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A vehicle control system has a plurality of subsystem controllers including an engine management system 28, a transmission controller 30, a steering controller 48, a brakes controller 62 and a suspension controller 82. These subsystem controllers are each operable in a plurality of subsystem modes, and are all connected to a vehicle mode controller 98 which controls the modes of operation of each of the subsystem controllers so as to provide a number of driving modes for the vehicle. Each of the modes corresponds to a particular driving condition or set of driving conditions, and in each mode each of the functions is set to the function in mode most appropriate to those conditions.

Description

BACKGROUND OF INVENTION[0001]1. Field of the Invention[0002]The present invention relates to the control of vehicles, in particular to the coordinated control of a number of subsystems of a vehicle.[0003]2. Background Art[0004]Various systems are known in which operation of various subsystems of a vehicle can operate in different configuration modes so as to suit different conditions. For example, automatic transmissions can be controlled in sport, winter, economy and manual configuration modes in which the changes between gear ratios and other subsystem control parameters are modified so as to suit the prevailing conditions or the taste of the driver. Air suspensions are known with on-road and off-road configuration modes. Stability control systems can be operated at reduced activity so as to give the driver more direct control over the operation of the vehicle. Power steering systems can be operated in different configurations modes where the level of assistance is at different le...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): G06F17/00B60K37/06
CPCB60K23/0808B60K35/00B60W50/082B60W2540/30B60W10/06B60W10/18B60W10/20B60W10/22B60W10/02B60W2552/35B60W2552/05B60W2540/215B60W50/085B60W30/00B60K37/06
Inventor SPILLANE, ANTHONY FRANCISBURDOCK, WILLIAMCLARE, DAVID ANDREWJONES, DEREK LESLIEKELLETT, JOHN ANTHONYPRINS, JAN PIETERPARSONS, KEITH GARY REGINALDDARNELL, PAUL MALCOLM
Owner JAGUAR LAND ROVER LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products