Method for recycling lithium carbonate from lithium iron phosphate waste material

A technology of lithium ferrous phosphate and lithium carbonate, which is applied in the field of lithium carbonate recovery, can solve the problems that lithium ferrous phosphate cannot be satisfied, product consistency is difficult to be guaranteed, etc., and achieve the effect of solving the problem of resource recycling and low cost

Active Publication Date: 2013-01-30
天齐锂业(江苏)有限公司 +2
View PDF12 Cites 46 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, due to the great variation in the quality of raw materials, it is difficult to guarantee the consistency of the product, which cannot meet the needs of industrialized large-scale production and recovery of lithium iron phosphate

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method for recycling lithium carbonate from lithium iron phosphate waste material
  • Method for recycling lithium carbonate from lithium iron phosphate waste material
  • Method for recycling lithium carbonate from lithium iron phosphate waste material

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0053] Embodiment 1 adopts the method of the present invention to comprehensively recycle and utilize lithium ferrous phosphate waste material

[0054] Discharge the residual power of the waste lithium ferrous phosphate power battery, disassemble the battery, take out the positive electrode sheet, and recycle the battery shell according to the classification of aluminum shell, steel shell, plastic, etc.; roast the lithium iron phosphate positive electrode sheet at 400°C for 1 hour, crush it and sieve it Separately recover the positive aluminum sheet; 100kg of lithium iron phosphate waste, lithium content 3.5%.

[0055] Roast lithium iron phosphate waste at 800°C for 1 hour, then add water to adjust the slurry, add 98% concentrated sulfuric acid to adjust the pH value to 0.5, filter to obtain a mixed solution of ferric phosphate, lithium phosphate, and ferric sulfate; heat the mixed solution to 80°C, add Alkali adjusted the pH value to 2.0, reacted for 4 hours, filtered to obta...

Embodiment 2

[0062] Embodiment 2 adopts the method of the present invention to comprehensively recycle lithium iron phosphate waste

[0063] Get 100kg of lithium ferrous phosphate waste produced in the battery production process, with a lithium content of 3.52%. Roast lithium iron phosphate waste at 600°C for 2 hours, then add water to adjust the slurry, add 98% concentrated sulfuric acid to adjust the pH value to 0.8, filter to obtain a mixed solution of ferric phosphate, lithium phosphate, and ferric sulfate; heat the mixed solution to 90°C, add Alkali adjusted the pH value to 2.3, reacted for 2 hours, filtered to obtain crude ferric phosphate, then washed with water at 60°C, and dried to obtain ferric phosphate; the filtrate was adjusted to a pH value of 7, added calcium chloride 100g, and then filtered to remove impurities; after removing impurities, the filtrate Adjust the pH value to 11 with sodium carbonate, react for 1 hour, filter to obtain crude lithium carbonate, wash with water...

Embodiment 3

[0069] Embodiment 3 adopts the method of the present invention to comprehensively recycle lithium ferrous phosphate waste

[0070] Get 100kg of lithium iron phosphate waste produced in the production process of lithium iron phosphate, and the lithium content is 4.38%. Roast lithium iron phosphate waste at 500°C for 4 hours, then add water to adjust the slurry, add 98% concentrated sulfuric acid to adjust the pH value to 1, filter to obtain a mixed solution of ferric phosphate, lithium phosphate, and ferric sulfate; heat the mixed solution to 100°C, add Alkali adjusted the pH value to 2.5, reacted for 1 hour, filtered to obtain crude iron phosphate, then washed with water at 80°C, and dried to obtain iron phosphate; the filtrate was adjusted to a pH value of 6, 100g of calcium chloride was added, and then filtered to remove impurities; after removal of impurities, the filtrate Adjust the pH value to 10 with sodium carbonate, react for 2 hours, filter to obtain crude lithium car...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention relates to a method for recycling lithium carbonate from a lithium iron phosphate waste material, and belongs to the technical field of waste lithium oil battery recycling. The technical problem to be solved by the invention is that a method for recycling lithium carbonate from the lithium iron phosphate waste material is provided. The method provided by the invention comprises the following steps of: roasting the lithium iron phosphate waste material at 500-800 DEG C for 1-4 hours; adding sulfur into the roasted waste material and leaching, and filtering so as to obtain a mixed solution of lithium phosphate, iron phosphate and ferric sulfate; heating the mixed solution to 80-100 DEG C, and adjusting the pH value to 2-2.5, reacting for 1-4 hours, filtering, washing, and drying to obtain iron phosphate; adjusting the pH value of a filtrate obtained by filtering to be 6-7, adding calcium chloride and dephosphorizing, and filtering; and adjusting the pH value of the filtrate obtained by filtering to be 10-12 by sodium carbonate, reacting for 0.5-2 hours, filtering, washing, and drying so as to obtain battery grade lithium carbonate.

Description

technical field [0001] The invention relates to a method for recovering lithium carbonate from lithium ferrous phosphate waste, and belongs to the technical field of recovery and utilization of waste lithium ion batteries. Background technique [0002] Lithium-ion battery is a green battery with a series of excellent properties. It has been widely used since it came out more than 10 years ago. Lithium iron phosphate (LiFePO 4 ) materials have become the preferred material for lithium-ion power batteries because of their high safety, high environmental protection, low price, and long life. Electric bicycles, mopeds, golf carts, airplane model toys, miner's lamps and other power battery fields. Car manufacturers are also repeatedly experimenting with lithium iron phosphate materials in starting power lithium-ion batteries (12V / 24V 50Ah). In the future, this material also has room for development in the fields of mobile communication base stations and energy storage equipmen...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(China)
IPC IPC(8): H01M10/54
CPCY02E60/12Y02W30/84
Inventor 王平熊仁利黄春莲金鹏赵金
Owner 天齐锂业(江苏)有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products