Network delay two-degree-of-freedom IMC method of two-input and two-output networked control systems

A technology of network delay and control system, applied in general control system, control/regulation system, adaptive control and other directions, can solve the problems of many uncertain factors, complex influence, system performance degradation, etc., to improve the dynamic performance quality , the effect of reducing the impact

Inactive Publication Date: 2017-06-06
HAINAN UNIVERSITY
View PDF0 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0011] (3) There are many uncertain factors in the accused
[0012] In MIMO-NCS, there are many parameters involved, and there are many connections between the control loops, and the influence of the parameter change of the controlled object on the overall control performance will become more complicated.
[0013] (4) The control components are more likely to fail
Time delay leads to system performance degradation and even system instability, and also brings difficulties to the analysis and design of the control system
[0019] (3) It is unrealistic to fully synchronize the clock

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Network delay two-degree-of-freedom IMC method of two-input and two-output networked control systems
  • Network delay two-degree-of-freedom IMC method of two-input and two-output networked control systems
  • Network delay two-degree-of-freedom IMC method of two-input and two-output networked control systems

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0143] The following will refer to the attached Figure 5 Exemplary embodiments of the present invention are described in detail to make the above-mentioned features and advantages of the present invention more apparent to those skilled in the art.

[0144] The specific implementation steps are as follows:

[0145] For closed loop control loop 1:

[0146] Step 1: The sensor S1 node works in the time-driven mode, when the sensor S1 node is cycled for h 1 After the sampling signal of is triggered, the controlled object G 11 (s) output signal y 11 (s) and the controlled object cross-channel transfer function G 12 (s) output signal y 12 (s), and the output signal y of the A1 node of the actuator 11mb (s) and y 12mb (s) Sampling and calculating the system output signal y of the closed-loop control loop 1 1 (s) and the feedback signal y 1b (s), and y 1 (s)=y 11 (s)+y 12 (s) and y 1b (s)=y 1 (s)-y 11mb (s)-y 12mb (s);

[0147] Step 2: The sensor S1 node will feed bac...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention provides a network delay two-degree-of-freedom IMC method of two-input and two-output networked control systems, and belongs to the technical field of bandwidth resource limited MIMO-NCS. Aiming at the problems of loss of stability of TITO-NCS and influencing the stability of its own closed control loop and influencing the stability of another closed control loop due to network delay generated by transmission of network data between nodes in the TITO-NCS in which two-input and two-output signals are mutually influenced, the method that the network data transmission process between all the real nodes in the TITO-NCS replaces a network delay compensation model is put forward, and two-degree-of-freedom IMC is performed on the two loops. With application of the method, measurement, estimation or identification of the network delay between the nodes can be omitted, the synchronization requirement of node clock signals can be omitted, the influence of the network delay on the stability of the TITO-NCS can be reduced and the control performance quality of the system can be improved.

Description

technical field [0001] A two-input and two-output network control system network delay two degrees of freedom IMC (Internal Model Control, IMC) method, related to the intersection of automatic control, network communication and computer technology, especially related to the multi-input multi-output network control system with limited bandwidth resources technology field. Background technique [0002] With the development of network communication, computer and control technology, and the increasingly large-scale, wide-area, complex and networked development of production process control, more and more network technologies are applied to control systems. Networked control systems (NCS) refer to network-based real-time closed-loop feedback control systems. The typical structure of NCS is as follows: figure 1 shown. [0003] NCS can realize complex large systems and remote control, node resource sharing, and increase system flexibility and reliability. In recent years, it has ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): G05B13/04
CPCG05B13/042
Inventor 杜锋
Owner HAINAN UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products