Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Transfection reagents

a technology of transfection reagents and reagents, applied in biochemistry apparatus and processes, instruments, material analysis, etc., can solve problems such as difficult conventional treatment, and achieve the effect of increasing cross-sectional area and reducing the hydrophobicity of reagents

Inactive Publication Date: 2006-11-16
NORTHWESTERN UNIV
View PDF5 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0019] In some embodiments, the mixture comprises first and second cationic lipoids. The present invention provides optimized transfection reagents comprising mixtures of cationic lipoids. In particular, the present invention provides DNA delivery vehicles based on identifying the optimal hydrophobicity of novel cationic phospholipid derivatives that, alone or in combination, form complexes with DNA (lipoplexes) and exhibit enhanced transfection activity.
[0021] In some embodiments, the second cationic lipoid is a lipoid with a hydrophobic structure that is significantly different from that of the first lipoid. The present invention is not limited to a particular mechanism. Indeed, an understanding of the mechanism is not necessary to practice the present invention. Nonetheless, the mechanism of action of such a hydrophobic structure may disrupt the packing of the bilayer of a liposome or other structure so that the lipid organization of the array may be different in the mixture, thereby enhancing transfection. Differences in physical organization of lipids of transfection agents may translate into effects on transfection, as measured by detecting transfection efficiency with and without the second cationic lipoid or by comparing the transfection reagents having the second cationic lipoid to other transfection reagents (see e.g., Example 1 for such a method). Optimization to determine the optimal composition for liposomes or other lipoid arrays can be achieved by a variety of methods. For example, in some embodiments, the second cationic lipoid has a smaller hydrophobic mass (e.g., shorter hydrophobic tail or net shorter hydrophobic tails in a molecule with multiple tails). In some embodiments, the second cationic lipoid is functionalized to add hydrophilicity (e.g., canceling some of the hydrophobic mass). For example, in some embodiments, a lipid head group is made larger or more hydrophilic. In some embodiments, a lipid tail is functionalized to reduce hydrophobicity. For example, in some embodiments, the functionalization comprises addition of one or more polar groups. In some embodiments, a polar fluorophore is added (e.g., NBD), providing the added feature of fluorescent detectability. In some embodiments, the second cationic lipoid comprises a head group and a second component with sufficient hydrophobicity to allow it to form a bilayer with the first cationic lipoid, but otherwise with low hydrophobicity.
[0023] In some embodiments, the present invention provides a composition comprising lipoid transfection reagents, wherein the reagents comprise a first cationic lipoid (e.g., having a head group and a lipid tail), and a second cationic lipoid (e.g., having the same or a different head group and a different, second lipoid tail), wherein the second cationic lipoid, when combined with said first cationic lipoid in said reagents, decreases the hydrophobicity of the reagents compared to said reagents in the absence of the second cationic lipoid, and wherein said decrease increases the ability of the reagents to transfect cells. In some preferred embodiments, the second cationic lipoid comprises either a short, medium, or long chain fatty acid and the first cationic lipoid comprises either a short, medium or long chain fatty acid. A short chain fatty acid is a fatty acid chain having 7 or less carbons. A medium chain fatty acid is a fatty acid chain having between 8 and 15 carbons (e.g., laurate, myristate, etc.). A long chain fatty acid is a fatty acid chain having 16 or more carbons (e.g., palmitate, stearate, oleate, etc.). The lipid tails may be saturated or unsaturated.
[0024] In other embodiments, the second lipoid has lipid tails that may be the same length as those of the first lipoid, but are of a different shape. Such different shapes arise by incorporating different carbon chain branches along the lipid tails (e.g., as when methyl branches are incorporated along the lipid tail, the result of which is to increase the cross-sectional area (in the plane of the bilayer) of the lipid). Generally, the chains may be either shorter and / or fatter than the chains of the first lipoid.

Problems solved by technology

There are approximately four thousand different genetic diseases, many highly debilitating and frequently resulting in death at an early age.
Because almost all of these diseases involve a defective protein, conventional treatment is difficult.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Transfection reagents
  • Transfection reagents
  • Transfection reagents

Examples

Experimental program
Comparison scheme
Effect test

example 1

EDLPC / EDOPC Transfection Reagents

[0072] Experiments conducted during the development of the present invention found that attention to the hydrophobic portions of medium and long-chain cationic lipids synergistically enhance transfection. It was found that a combination of two cationic lipid derivatives with the same head group but tails of different chain lengths behave considerably differently as transfection agents than the separate molecules. For example, the combination of the dilauroyl (12 carbon chain) and the dioleoyl (18 carbon chain) homologues of O-ethylphosphatidylcholine transfected DNA into primary human umbilical artery endothelial cells (HUAECS) more than 30-fold more efficiently than either compound separately. The present invention is not limited to a particular mechanism. Indeed, an understanding of the mechanism is not necessary to practice the present invention. Nonetheless, these results suggest that the hydrophobic portions of medium and long-chain cationic li...

example 2

Transfection of Human Dermal Fibroblasts with EDOPC / EPOPC and EDOPC / EDiphytanoyl PC Transfection Reagents

[0087]FIG. 8 shows that combining EDOPC with EPOPC (one oleoyl chain, which is 18C's with one double bond, and one palmitoyl chain, which is 16C's without any double bond) shows little mixing effect in transfection of human dermal fibroblast cells in the absence of serum.

[0088]FIG. 9 shows that combining EDOPC with EDiphytanoyl PC (two phytanoyl chains, 16 carbon chains with 4 methyl branches) shows marked mixing effect in the transfection of human dermal fibroblast cells in the absence of serum.

example 3

Transfection of HUAECs with EDOPC / EPOPC, EDOPC / EDiphytanoylPC, EDOPC / SDOPC and EDOPC / EC18C10PC

[0089]FIG. 10 shows the results of transfecting HUAECs with EDOPC / EPOPC, EDOPC / EDiphytanoylPC, EDOPC / SDOPC (DOPC with an 18 carbon chain instead of an ethyl group on the phosphate oxygen), and EDOPC / EC18C10PC mixtures.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
lengthaaaaaaaaaa
timeaaaaaaaaaa
timeaaaaaaaaaa
Login to View More

Abstract

The present invention provides optimized transfection reagents comprising mixtures of cationiclipoids. In particular, the present invention provides DNA delivery vehicles based on identifying the optimal hydrophobicity of novel cationic phospholipid derivatives that, alone or in combination, form complexes with DNA (lipoplexes) and exhibit enhanced transfection activity.

Description

[0001] This application claims priority to U.S. Provisional Patent Application Ser. No. 60 / 508,544, filed Oct. 3, 2003, which is incorporated herein by reference in its entirety.[0002] The present invention was made, in part, under funds from the National Institutes of Health Grant No. GM 52329. The government may have certain rights in the invention.FIELD OF THE INVENTION [0003] The present invention provides optimized transfection reagents comprising mixtures of cationic lipoids. In particular, the present invention provides DNA delivery vehicles based on identifying optimal hydrophobicity of novel cationic phospholipid derivatives that, alone or in combination, form complexes with DNA (lipoplexes) and exhibit enhanced transfection activity. BACKGROUND [0004] There are approximately four thousand different genetic diseases, many highly debilitating and frequently resulting in death at an early age. Because almost all of these diseases involve a defective protein, conventional trea...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61K9/127C12N15/88C12NC12N15/85
CPCC12N15/88
Inventor MACDONALD, ROBERT C.WANG, LI
Owner NORTHWESTERN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products