Composite reinforcement of metallic structural elements

a technology of composite reinforcement and structural elements, applied in the direction of girders, joists, trusses, etc., can solve the problems of weakening the structure, essentially defeating the purpose of bonding the two materials

Inactive Publication Date: 2006-12-21
THE BOEING CO
View PDF17 Cites 37 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0008] In accordance with one aspect of the present invention, a reinforced hybrid structural element can include a metal element and a composite ply. In addition, the composite play can be bonded to the metal element using radiation. The structural element can optionally include an adhesive layer that is at least partially cured using radiation in order to bond the composite ply to the metal element.
[0009] In accordance with another aspect of the present invention, a method of manufacturing a selectively reinforced hybrid structural element can include the steps of providing a metal element and laying up a composite ply over at least a partial surface of the metal element. In addition, the met

Problems solved by technology

However, when composite materials have been bonded to metal elements using conventional thermal composite matrix curing techniques, in at least some instances the differential thermal contraction between the metal element and the composite material follow

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Composite reinforcement of metallic structural elements
  • Composite reinforcement of metallic structural elements
  • Composite reinforcement of metallic structural elements

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0019] Some embodiments in accordance with the present invention provide a hybrid metal-composite structural element that includes a metal element and a composite material bonded together using radiation curing. The structural element can include an adhesive layer between the metal element and the composite material to bond the composite material to the metal element and to act as a corrosion-resistant barrier between the metal and the composite element.

[0020] Composite materials including a polymer matrix are generally fabricated by one of three types of processes. The first type is a chemical curing process in which a two-part epoxy matrix is combined and a spontaneous chemical reaction occurs between the components of the two parts, resulting in cross-linking between the polymer molecules. The second type is a thermal curing process used with thermosetting or thermoplastic matrices in which an elevated temperature causes cross-linking or consolidation of the polymer molecules. T...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A selectively reinforced hybrid metal-composite structural element can include a metal element and a composite material. The composite material can be bonded to the metal element by an adhesive layer including a polymer matrix using a radiation curing process, resulting in insubstantial or negligible residual stresses at the bond line between the metal element and the composite element. The structural element also can include a metal closeout cap to provide a barrier from a corrosive atmosphere, and the adhesive layer can encapsulate the composite element to provide a corrosion-resistant barrier between the composite element and the surrounding metal.

Description

FIELD OF THE INVENTION [0001] The present disclosure relates generally to structural reinforcement. More particularly, the present invention relates to selective reinforcement of metallic structural elements using composite materials. BACKGROUND OF THE INVENTION [0002] Structural elements are used to maintain the structural integrity of a wide variety of structures, including, for example, bridges, buildings, airplanes, trains, sea vessels and propellers. A structural element for a particular application generally can be either selected from existing types of commonly available structural elements or specially designed to suit the needs of an application. [0003] In either case, the cross-sectional shape of the structural element often is selected or designed to include more material at locations in the cross-section that will experience greater stress under the design loading. Thus, structural elements can be designed to carry specific types of loads. For example, common structural ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): E04C3/30
CPCE04C3/29Y10T156/1064E04C2003/0452
Inventor WESTRE, WILLARD N.MICONA, LEANNA M.WILENSKI, MARK S.WEBER, GARY R.
Owner THE BOEING CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products