MOS transistor

a technology of mos transistor and mos, which is applied in the direction of transistors, semiconductor devices, electrical equipment, etc., can solve the problems of reducing access resistance, difficult to control junction depth, and implantation and spike rtp can hardly meet the nfet sce requirement, so as to improve the short channel effect, the effect of co-existing dopants and good junction profil

Inactive Publication Date: 2007-10-04
UNITED MICROELECTRONICS CORP
View PDF11 Cites 7 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0017] The method of forming a MOS transistor comprises a step of co-implantation to implant carbon, a hydrocarbon compound, or a derivative of the hydrocarbon compound, such as one selected from a group consisting of C, CxHy+, and (CxHy)n+, wherein x is a number of 1 to 10, y is a number of 4 to 20, and n is a number of 1 to 1000, within substantially the same place as that of the lightly doped drain or source, the source region and the drain region, or the halo implanted

Problems solved by technology

With the device scaling down, it's difficult to control the junction depth (Xj) and also reduce the access resistance.
But from 65 nm node and beyond, the conventional As implanta

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • MOS transistor
  • MOS transistor
  • MOS transistor

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0026] Refer to FIGS. 2 to 6 for illustration of an embodiment according to the present invention. FIG. 2 is a flow chart showing the method of forming a MOS transistor according to the present invention. The method of forming a MOS transistor of the embodiment according to the present invention comprises the steps of follows. A substrate having a gate, a source region and a drain region, and a channel region is provided. A pre-amorphization 301 is performed to form an amorphized region in the source region and the drain region, respectively. A co-implantation 302 is performed to implant an implant within the source region and the drain region. A light ion implantation 303 is performed to form a doped region in the source region and the drain region. A spacer is formed on the sidewall of the gate. A source / drain ion implantation 304 is performed to form a doped region. An anneal process 305 is performed to activate the dopants, regrow the amorphized regions to a substantially crysta...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A method of forming a MOS transistor, in which a co-implantation is performed to implant an implant into a source region and a drain region or a halo implanted region to effectively prevent dopants from over diffusion in the source region and the drain region or the halo implanted region, for obtaining a good junction profile and improving short channel effect. The implant comprises carbon, a hydrocarbon, or a derivative of the hydrocarbon, such as one selected from a group consisting of C, CxHy+, and (CxHy)n+, wherein x is a number of 1 to 10, y is a number of 4 to 20, and n is a number of 1 to 1000.

Description

CROSS REFERENCE TO RELATED APPLICATIONS [0001] This is a divisional application of U.S. patent application Ser. No. 11 / 278,434 filed on Apr. 3, 2006, and the contents of which are included herein by reference.BACKGROUND OF THE INVENTION [0002] 1. Field of the Invention [0003] The present invention relates a method of forming a MOS transistor, and particularly a method of forming a MOS transistor having an improved short channel effect, comprising a step of co-implantation using an implant comprising carbon, hydrocarbon, or a derivative thereof. [0004] 2. Description of the Prior Art [0005] Field effect transistors (FETs) are important electronic devices in the fabrication of integrated circuits, and as the size of the semiconductor device becomes smaller and smaller, the fabrication of the transistors also improves and is constantly enhanced for fabricating transistors with smaller sizes and higher quality. [0006] In the conventional method of fabricating transistors, a gate structu...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): H01L29/772
CPCH01L21/26506H01L29/6659H01L21/2658
Inventor WANG, HSIANG-YINGCHIEN, CHIN-CHENGHSIAO, TSAI-FUCHIEN, MING-YENCHEN, CHAO-CHUN
Owner UNITED MICROELECTRONICS CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products