Containerless mixing of metals and polymers with fullerenes and nanofibers to produce reinforced advanced materials

a technology of nanofibers and nanofibers, which is applied in the field of material science, can solve the problems of high potential, and achieve the effects of increasing strength, shear strength, and strengthening metal systems

Inactive Publication Date: 2008-02-14
WILLIAM MARSH RIDE UNIV
View PDF29 Cites 5 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0013]A method of developing nanotube reinforced metals where a high degree of dispersion is achieved has been developed and has the potential to be scaled up to make a range of materials. This new composition of matter (nanotube filled matrices) is a multifunctional material based on processing, composition, and degree of in situ processing. Containerless processing (CP) in the form of electromagnetic field enduced mixing leads to controlled dispersion of nanotubes in various metal matrices and this is a new use for this processing / manufacturing method. Both stable nanotube systems and in situ processed reinforcements, where nanotubes act as precursors for new dispersed particles are achieved. A range of processing routes are at hand: Some examples by way of illustration are: 1) Molten metals can be levitated and nanotubes can be added on demand, (2) Canned powder / nanotube mixtures can be levitated, melted and mixed to desired dispersion levels, (3) Green compacts of metal powder / nanotubes can be precursor systems for achieving preferred mixing and dispersion, (4) Metal / alloy matching with nanotube additions can be used to achieve in situ processed new reinforcements where the fullerenes and nanofibers act as precursors, and (5) Scale up and coil shape development can lead to achieving aligned highly dispersed nanotubes and in situ reinforcements in metal matrices.
[0017]This invention marks the opportunity to have developed metal systems taking advantage of the unique properties of dispersed nanotubes. Metal systems for multifunctional applications are of tremendous interest. Nanotubes offer the enhancement of metal systems for homogeneous or anisotropic use. Nanotubes will see a large number of applications but a significant number of them will require other material systems to be a component with them. This is apparent because although one of the sought after properties of a nanotube and more particularly pure SWNT, is the greatly increased strength. Consider a crystalline structure of aligned packed SWNT in the pure form However, for example, the shear strength between the different tubes is not great, and a composite or added material would then be stronger than the pure form. Crystalline nanotube systems may lead to high strength but it is expected that additional materials combined with the nanotubes or that provide bonding between the nanotubes for ensuring shear strength will likely be needed. In other engineering applications it might be desirable to provide a coating to protect the pure nanotubes, for instance for corrosion protection. This invention provides new material being developed by a new use of CP and will foster both the processing mode (CP) and the materials being developed (Metal systems with dispersed nanotubes).

Problems solved by technology

The market potential is high since this method will insure manufacturing levels only limited by the availability of nanotubes and the speed at which this containerless process method can be scaled up.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Containerless mixing of metals and polymers with fullerenes and nanofibers to produce reinforced advanced materials
  • Containerless mixing of metals and polymers with fullerenes and nanofibers to produce reinforced advanced materials
  • Containerless mixing of metals and polymers with fullerenes and nanofibers to produce reinforced advanced materials

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0030]The present invention allows for the development of composite materials reinforced with single- and multi-walled nanotubes in order to produce materials that are lightweight, possess high strength and stiffness, and show improved composite toughness. A complementing aspect of the invention allows for tailoring the thermal and electrical properties of these nanotube derived materials, and processing and manufacturing parts using them.

[0031]The problems with infiltration of a metal with the nanotubes can be solved by fluid mixing that occurs in the electromagnetic levitation process. The invention addresses embedded nanotube dispersion, wettability, adhesion, and alignment issues in a matrix of metals. Functionalizing of the metallic and semiconducting nanotubes along the tube wall can be used to ensure wetting. A series of metals and alloy matrices including aluminum, copper, and tin have been processed with nanotubes to investigate the thermophysical properties of the melt mix...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
band gapaaaaaaaaaa
electromagneticaaaaaaaaaa
electrically conductingaaaaaaaaaa
Login to view more

Abstract

The present invention relates to fullerene, nanotube, or nanofiber filled metals and polymers. This invention stems from a cross-disciplinary combination of electromagnetic and acoustic processing and property enhancement of materials through fullerene or nanofiber additives. Containerless processing (CP) in the form of electromagnetic field enduced and / or acoustic mixing leads to controlled dispersion of fullerenes, nanotubes, or nanofibers in various matrices. The invention provides methods of mixing that highly disperse and align the fullerenes, nanotubes, or nanofibers within the matrices of metals and polymers. The invention provides new compositions of matter and multifunctional materials based on processing, composition, and degree of in situ processing.

Description

[0001]This invention was made with Government support under NSF Grants Nos. CTS-9312379 and DMR-9357505 awarded by the National Science Foundation and the Texas Advanced Technology Program, TATP Grant No. 003604-056. The Government may have certain rights in the invention.BACKGROUND OF THE INVENTION[0002]1. Field of the Invention[0003]The present invention relates in general to the materials science field of composites, and more particularly to composites of dispersed nanotubes or nanofibers in a desired matrix. Even more specifically the present invention relates to a composite of highly dispersed or aligned fullerene nanotubes within a pure metal or metal alloy matrix and the process for making the same. The invention comprises at least three aspects: the composition of the composite material, the process for making the composite material, and an improved method for mixing or dispersing nanotubes in a matrix.[0004]The invention relates to fullerene, nanotube, or nanofiber filled m...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): B22F9/02
CPCC22C26/00C22C32/0084C22C2026/002C22C2026/001C22C47/08
Inventor BARRERA, ENRIQUE VBAYAZITOGLU, YILDIZ
Owner WILLIAM MARSH RIDE UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products