Inkjet printing process

Inactive Publication Date: 2012-10-04
EASTMAN KODAK CO
View PDF3 Cites 17 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0013]The various embodiments of the invention provide a process for inkjet printing and drying inks with improved absorption in the n-IR region of the spectrum for improved drying performance of aqueous, hypsochromic inks, and an inkjet ink set with improved balanced n-IR drying of black and yellow inkjet inks.

Problems solved by technology

Although the use of infrared drying systems work well for inks that have significant absorption in the IR region of the spectrum, they may not be adequate for inks with minimal absorption in this region of the spectrum.
For example, the efficiency of absorption of the near-IR radiation is typically very good for inks containing carbon black, and reasonably good for cyan inks as well, but may be inadequate for inks that absorb strongly hypsochromic of the near-IR emitter, such as yellow and magenta inks.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Inkjet printing process
  • Inkjet printing process
  • Inkjet printing process

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0052]Yellow pigment dispersion YD-1—To a 10-gallon stainless steel mixing vessel was added 2,560 g water and 2,400 g of a 15% solution of KOH-neutralized dispersant terpolymer, prepared from benzyl methacrylate, stearyl methacrylate, and methacrylic acid at the feed ratio of 37:30:33 by weight, and having an average MW of 8,700 (polymer P-1). Mixing was initiated using a ring-style disperser impeller. Pigment Yellow 74 (Sun Chemical) (1,200 g) was added to the fluid. Milling media comprising beads of polystyrene resin was added slowly while increasing impeller speed, and the mixture was milled for about 20 hours. The dispersion / media mixture was further diluted with water (5,940 g) and biocide KORDEK MLX (Rohm and Haas Co.) (60 g) to a final pigment concentration of about 10%, and the milling media filtered off. A final filtration through a 0.3-micrometer Pall Corp. PROFILE II depth filter yielded roughly 10.6 kg of dispersion. The dispersion had a median particle size of 80 nanome...

example 2

[0057]Coatings of yellow inks YI-1 through YI-5 were made on STERLING ULTRAGLOSS paper using a drawdown apparatus #3 wire-bound rod, and dried. The spectra of the dried inks are shown in FIG. 2. Once dried, there is virtually no increased absorption for the inks containing the colloidal silica additive compared to the comparative yellow ink. The transparency of the dried silica to near-IR in the dried inks allows the bottom of the ink coating to receive full exposure to the radiation. Only the wet ink, containing the Si—OH functionality, absorbs in the near-IR as shown in FIG. 1.

example 3

[0058]Draw-down coatings of yellow inks YI-1 through YI-5 were prepared as in Example 2, placed on a conveyor belt and passed under a near-IR drying system at such a rate (8 in / sec) that the coating did not completely dry. The temperature of the semi-wet coating was measured upon exiting the near-IR drying system. The coating needed to remain wet and contain the Si—OH absorbing functionality to observe the temperature increase since dried coatings transmit radiation and cool rapidly. FIG. 3 shows the temperature increase of semi-wet coatings of 0-4% silica containing yellow inks after exposure to near-IR radiation and upon exiting the drying system.

[0059]The FIG. 1 near-IR solution spectra and FIG. 3 drying experiment results show that the addition of nanoparticulate colloidal silica results in an increased absorption of near-IR radiation and that this energy is converted to thermal energy. The addenda is small enough to not affect gloss and does not affect the ink in a detrimental ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A process for printing an image includes printing a substrate with an aqueous inkjet ink and drying the printed image with a near-infrared drying system, wherein the inkjet ink is a yellow or magenta inkjet ink and comprises a yellow or magenta colorant and a distinct near-infrared absorbing compound. Inkjet ink sets for use with an inkjet printing system employing a near-infrared drying system in the process include at least a black ink and a yellow ink, wherein the yellow ink comprises a yellow colorant and dispersed nanoparticulate colloidal silica at a concentration of from 0.1 to about 10 wt %, and the black ink comprises a black colorant and dispersed nanoparticulate colloidal silica at a concentration of from 0 wt. % to at most ½ of the wt. % of the dispersed nanoparticulate colloidal silica in the yellow ink. Various embodiments provide a process for inkjet printing and drying inks with improved absorption in the near-IR region of the spectrum for improved drying performance of aqueous, hypsochromic inks, and an inkjet ink set with improved balanced near-IR drying of black and yellow inkjet inks.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS[0001]Reference is made to commonly assigned U.S. Ser. No. ______ (Kodak Docket K000023) filed concurrently herewith, directed towards “Inkjet Printing Ink Set,” the disclosure of which is incorporated by reference herein in its entirety.FIELD OF THE INVENTION[0002]The invention relates generally to the field of inkjet printing systems and processes, and in particular to inkjet printing systems and processes employing infrared emission drying systems. More specifically, the invention relates to use of specially formulated inkjet inks in such systems and processes, and in particular in continuous inkjet printing systems and processes, which enable high speed printing and drying.BACKGROUND OF THE INVENTION[0003]Inkjet printing is a non-impact method for producing printed images by the deposition of ink droplets in a pixel-by-pixel manner to an image-recording element in response to digital signals. There are various methods that can be used to co...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): B41J29/38B41J2/01
CPCB41M7/009
Inventor BUGNER, DOUGLAS EUGENELUSSIER, BARBARA BOLAND
Owner EASTMAN KODAK CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products