Manufacturing and controlling method of flexible micro-driver for controlling micro-nano particles

A technology of micro-nano particles and micro-actuators, applied in the direction of nanostructure manufacturing, nanotechnology, nanotechnology, etc., can solve the problems of difficult miniaturization and integration of optical paths, high cost, and long time, and achieve easy magnetic field drive and manufacturing process Simple, highly reliable results

Active Publication Date: 2016-08-17
XI AN JIAOTONG UNIV
View PDF3 Cites 12 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0003] At present, there are the following problems in the manipulation method of micro-nano particles: based on the surface acoustic wave acoustic control method, the preparation of micro-nano interdigitated electrodes is required, the process is complicated, and the cost is high; based on the atomic force microscopy method, since scanning and imaging cannot be performed simultaneously , resulting in low operating efficiency of the atomic force microscope, and it is difficult to realize large-scale batch nano-operation; the disadvantage of dielectrophoresis is that its electrodes need to be individually designed according to different manipulation purposes, and the preparation process of

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Manufacturing and controlling method of flexible micro-driver for controlling micro-nano particles
  • Manufacturing and controlling method of flexible micro-driver for controlling micro-nano particles
  • Manufacturing and controlling method of flexible micro-driver for controlling micro-nano particles

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 2

[0042] A method for manufacturing and manipulating a flexible micro-actuator for manipulating micro-nano particles, comprising the following steps:

[0043] 1) First coat the hydrosol adhesive layer 1 on the surface of the substrate 2, then obtain a micro-nano patterned photoresist on the hydrosol adhesive layer 1 through a photolithography process; Micro-nanoparticles 3 are patterned, and then the photoresist is removed to obtain a patterned template of magnetic micro-nanoparticles 3, and the magnetic micro-nanoparticles 3 are iron powder with a particle size of D1=20 μm;

[0044] 2) Refer to figure 1 , coating the polymer 4 on the surface of the non-magnetic substrate 6, and then pre-heating the non-magnetic substrate 6, the pre-heating parameters: the temperature is 75°C, and the time is 6 minutes; then the magnetic micro-nano on the surface of the patterned template The particle 3 contacts and embeds the polymer 4, the embedding depth is T=10 μm, where T

Embodiment 3

[0054] A method for manufacturing and manipulating a flexible micro-actuator for manipulating micro-nano particles, comprising the following steps:

[0055] 1) First coat the hydrosol adhesive layer 1 on the surface of the substrate 2, then obtain a micro-nano patterned photoresist on the hydrosol adhesive layer 1 through a photolithography process; The micro-nanoparticles 3 are patterned, and then the photoresist is removed to obtain a patterned template of the magnetic micro-nanoparticles 3. The magnetic micro-nanoparticles 3 are cobalt powders with a particle size of D1=150 μm;

[0056] 2) Refer to figure 1 , coating the polymer 4 on the surface of the non-magnetic substrate 6, and then preheating the non-magnetic substrate 6, the pre-heating parameters: the temperature is 90°C, and the time is 2 minutes; then the magnetic micro-nanoparticles on the surface of the patterned template 3 contacting and embedding the polymer 4, the embedding depth is T=50 μm, where T

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Particle sizeaaaaaaaaaa
Particle sizeaaaaaaaaaa
Particle sizeaaaaaaaaaa
Login to view more

Abstract

A manufacturing and controlling method of a flexible micro-driver for controlling micro-nano particles includes the steps of manufacturing a patterning template of magnetic micro-nano particles, coating the surface of a nonmagnetic substrate with polymers, making the polymers make contact with and embedded in the micro-nano particles on the surface of the patterning template to lift the patterning template and stretch the polymers into a mushroom-shaped micro-nano column array, heating the patterning template to make the patterned magnetic micro-nano particles disengaged from a hydrosol adhesion layer to obtain a flexible mushroom-shaped micro-nano column array with magnetic micro-nano particles at the top end, namely, the flexible micro-driver, making to-be-controlled micro-nano particles drip onto the surface of the flexible mushroom-shaped micro-nano column array, adjusting and controlling the position and the horizontal/vertical movement speed of a magnet under the nonmagnetic substrate so that the translation, grabbing and jumping of the micro-nano particles can be controlled, and adjusting and controlling the positions and rotating speeds of a pair of magnets on the nonmagnetic substrate so that the rotating of the micro-nano particles can be controlled. The flexible micro-driver is easy to manufacture and good in controllability.

Description

technical field [0001] The invention belongs to the technical field of micro-nano manufacturing, and in particular relates to a method for manufacturing and controlling a flexible micro-actuator for manipulating micro-nano particles. Background technique [0002] At present, the methods for manipulating micro-nano particles mainly include: acoustic manipulation based on surface acoustic waves, atomic force microscopy, dielectrophoresis, photophotography, and piezoelectric transducers. Among them, the acoustic manipulation method based on surface acoustic waves mainly uses the particles in the sound field to produce reflection, refraction, absorption and other effects on the sound waves, so that the momentum carried by the sound field is exchanged between the sound waves and the particles, and then the particles are affected by the force to make them move. Be manipulated. Based on the atomic force microscope method, the manipulation of micro-nano particles is realized by mea...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): B82B3/00B82Y40/00
CPCB82B3/0014B82B3/0076B82Y40/00
Inventor 蒋维涛刘红忠雷彪陈邦道史永胜尹磊
Owner XI AN JIAOTONG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products