Steerable segmented endoscope and method of insertion

a segmented, endoscope technology, applied in the field of endoscopes and endoscopic medical procedures, can solve the problems of increasing the potential for complications, complicated insertion of the colonoscope, and more procedures, and achieves the effect of easy replacement and minimal friction resistan

Inactive Publication Date: 2008-02-21
INTUITIVE SURGICAL OPERATIONS INC
View PDF33 Cites 71 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0010] This particular embodiment, as mentioned, may have individual motors, e.g., small brushed DC motors, to actuate each individual segment. Furthermore, each segment preferably has a backbone segment which defines a lumen therethrough to allow a continuous lumen to pass through the entire endoscopic instrument to provide an access channel through which wires, optical fibers, air and / or water channels, various endoscopic tools, or any variety of devices and wires may be routed. The entire assembly, i.e., motors, backbone, cables, etc., may be encased or covered in a biocompatible material, e.g., a polymer, which is also preferably lubricious to allow for minimal frictional resistance during endoscope insertion and advancement into a patient. This biocompatible cover may be removable from the endoscopic body to expose the motors and backbone assembly to allow for direct access to the components. This may also allow for the cover to be easily replaced and disposed after use in a patient.
[0011] The method of the present invention involves inserting the distal end of the endoscope body into a patient, either through a natural orifice or through an incision, and steering the selectively steerable distal portion to select a desired path. When the endoscope body is advanced or inserted further into the patient's body, the electronic motion controller operates the automatically controlled proximal portion of the body to assume the selected curve of the selectively steerable distal portion. This process is repeated by selecting another desired path with the selectively steerable distal portion and advancing the endoscope body again. As the endoscope body is further advanced, the selected curves propagate proximally along the endoscope body. Similarly, when the endoscope body is withdrawn proximally, the selected curves propagate distally along the endoscope body, either automatically or passively. This creates a sort of serpentine motion in the endoscope body that allows it to negotiate tortuous curves along a desired path through or around and between organs within the body.

Problems solved by technology

Insertion of the colonoscope is complicated by the fact that the colon represents a tortuous and convoluted path.
Considerable manipulation of the colonoscope is often necessary to advance the colonoscope through the colon, making the procedure more difficult and time consuming and adding to the potential for complications, such as intestinal perforation.
However, as the colonoscope is inserted farther and farther into the colon, it becomes more difficult to advance the colonoscope along the selected path.
Friction and slack in the colonoscope build up at each turn, making it more and more difficult to advance and withdraw the colonoscope.
In addition, the force against the wall of the colon increases with the buildup of friction.
In cases of extreme tortuosity, it may become impossible to advance the colonoscope all of the way through the colon.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Steerable segmented endoscope and method of insertion
  • Steerable segmented endoscope and method of insertion
  • Steerable segmented endoscope and method of insertion

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0031]FIG. 2 shows the steerable endoscope 100 of the present invention. The endoscope 100 has an elongate body 102 with a manually or selectively steerable distal portion 104 and an automatically controlled proximal portion 106. The selectively steerable distal portion 104 can be selectively steered or bent up to a full 180 degree bend in any direction. A fiberoptic imaging bundle 112 and one or more illumination fibers 114 extend through the body 102 from the proximal end 110 to the distal end 108. Alternatively, the endoscope 100 can be configured as a video endoscope with a miniaturized video camera, such as a CCD camera, positioned at the distal end 108 of the endoscope body 102. The images from the video camera can be transmitted to a video monitor by a transmission cable or by wireless transmission where images may be viewed in real-time or recorded by a recording device onto analog recording medium, e.g., magnetic tape, or digital recording medium, e.g., compact disc, digita...

second embodiment

[0035]FIG. 3 shows the endoscope 100 of the present invention. As in the embodiment of FIG. 2, the endoscope 100 has an elongate body 102 with a selectively steerable distal portion 104 and an automatically controlled proximal portion 106. The steering control 122 is integrated into proximal handle 120 in the form or one or two dials for selectively steering, the selectively steerable distal portion 104 of the endoscope 100. Optionally, the electronic motion controller 140 may be miniaturized and integrated into proximal handle 120, as well. In this embodiment, the axial motion transducer 150 is configured with a base 154 that is attachable to a fixed point of reference, such as the surgical table. A first roller 156 and a second roller 158 contact the exterior of the endoscope body 102. A multi-turn potentiometer 160 or other motion transducer is connected to the first roller 156 to measure the axial motion of the endoscope body 102 and to produce a signal indicative of the axial p...

third embodiment

[0037]FIG. 4 shows the endoscope 100 of the present invention, which utilizes an elongated housing 170 to organize and contain the endoscope 100. The housing 170 has a base 172 with a linear track 174 to guide the body 102 of the endoscope 100. The housing 170 may have an axial motion transducer 150′ that is configured as a linear motion transducer integrated into the linear track 174. Alternatively, the housing, 170 may have an axial motion transducer 150″ configured similarly to the axial motion transducer 150 in FIG. 2 or 3. The endoscope 100 may be manually advanced or withdrawn by the user by grasping the body 102 distal to the housing 170. Alternatively, the housing 170 may include a motor 176 or other linear motion actuator for automatically advancing and withdrawing the body 102 of the endoscope 100. In another alternative configuration, a motor with friction wheels, similar to that described above in connection with FIG. 3, may be integrated into the axial motion transducer...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A steerable endoscope has an elongated body with a selectively steerable distal portion and an automatically controlled proximal portion. The endoscope body is inserted into a patient and the selectively steerable distal portion is used to select a desired path within the patient's body. When the endoscope body is advanced, an electronic motion controller operates the automatically controlled proximal portion to assume the selected curve of the selectively steerable distal portion. Another desired path is selected with the selectively steerable distal portion and the endoscope body is advanced again. As the endoscope body is further advanced, the selected curves propagate proximally along the endoscope body, and when the endoscope body is withdrawn proximally, the selected curves propagate distally along the endoscope body. This creates a serpentine motion in the endoscope body allowing it to negotiate tortuous curves along a desired path through or around and between organs within the body.

Description

CROSS-REFERENCE TO OTHER APPLICATIONS [0001] The present application is a continuation of U.S. patent application Ser. No. 09 / 969,927 entitled “Steerable Segmented Endoscope and Method of Insertion” filed Oct. 2, 2001, which is a continuation-in-part of U.S. patent application Ser. No. 09 / 790,204 entitled “Steerable Endoscope and Improved Method of Insertion” filed Feb. 20, 2001, which claims priority of U.S. Provisional Patent Application No. 60 / 194,140 filed Apr. 3, 2000, each of which is incorporated herein by reference in its entirety.FIELD OF THE INVENTION [0002] The present invention relates generally to endoscopes and endoscopic medical procedures. More particularly, it relates to a method and apparatus to facilitate insertion of a flexible endoscope along a tortuous path, such as for colonoscopic examination and treatment. BACKGROUND OF THE INVENTION [0003] An endoscope is a medical instrument for visualizing the interior of a patient's body. Endoscopes can be used for a var...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A61B1/00A61B1/005A61B1/008G02B23/24A61B1/01A61B1/04A61B1/31
CPCA61B1/0055A61B1/0053A61B1/008A61B1/00055A61B1/018A61B1/00004A61B2019/2273A61B1/0016A61B1/31A61B2019/2211A61B2019/2276A61B5/065A61B1/015A61B1/05A61B2034/742A61B2034/301A61B2034/741
Inventor BELSON, AMIR
Owner INTUITIVE SURGICAL OPERATIONS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products