Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Stent assembly for the treatment of vulnerable plaque

a vulnerable plaque and stent technology, applied in the field of vascular repair devices, can solve the problems of less understanding of thrombosis, total thrombotic occlusion of the artery, and inability to stabilize or vulnerable plaque, and achieve the effect of reducing the stress of the cap

Inactive Publication Date: 2009-10-29
ABBOTT CARDIOVASCULAR
View PDF16 Cites 6 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The stent assembly effectively navigates tortuous vessels, maintains patency of the artery, and reduces fibrous cap stresses, thereby preventing thrombotic occlusions and treating vulnerable plaques effectively.

Problems solved by technology

Currently, the treatment of unstable or vulnerable plaque presents a significant therapeutic challenge to medical investigators.
With the rupture of fibroatheroma forms of vulnerable plaque, the luminal blood becomes exposed to tissue factor, a highly thrombogenic core material, which can result in total thrombotic occlusion of the artery.
In the erosive form of vulnerable plaque, mechanisms of thrombosis are less understood but may still yield total thrombotic occlusion.
Although rupture of the fibrous cap in a fibroatheroma is a major cause of myocardial infarction (MI) related deaths, there are currently no therapeutic strategies in place to treat lesions that could lead to acute MI.
One of the difficulties encountered using prior art stents involved maintaining the radial rigidity needed to hold open a body lumen while at the same time maintaining the longitudinal flexibility of the stent to facilitate its delivery.
While other numerous prior art stents have had sufficient radial strength to hold open and maintain the patency of a coronary artery, they have lacked the flexibility required to easily navigate tortuous vessels without damaging the vessels during delivery.
A disadvantage may be that the metallic stent lacks flexibility which is important during the delivery of the stent to the target site.
With respect to polymer stents, they may have a tendency to be quite flexible and are advantageous for use during delivery through tortuous vessels, however, such polymer stents may lack the radial strength necessary to adequately support the lumen once implanted into an occlusive fibromuscular lesion of 70% stenosis or greater.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Stent assembly for the treatment of vulnerable plaque
  • Stent assembly for the treatment of vulnerable plaque
  • Stent assembly for the treatment of vulnerable plaque

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0029]The stent assembly of the present invention serves to treat a lesion with vulnerable plaque by reducing the cap stresses. The embodiments set forth herein describe a first metallic stent 36 interconnected to a second metallic stent 38 by a polymeric sleeve portion 26 (FIG. 5) to thereby form the stent assembly of the present invention. Further, methods of fabricating a stent assembly for the treatment of vulnerable plaque and methods of using the stent assembly for the treatment of the same are also disclosed herein.

[0030]Turning to the drawings, FIG. 1 depicts a metallic stent 10 incorporating features of the invention (shown without a polymer sleeve portion 26 (FIG. 5)) mounted on a catheter assembly 12 which is used to deliver the stent and implant it in a body lumen, such as a coronary artery, peripheral artery, or other vessel or lumen within the body. The stent generally includes a plurality of radially expandable cylindrical rings 11 disposed generally coaxially and int...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

An intravascular stent assembly for implantation in a body lumen, such as a coronary artery, is designed to treat a lesion with vulnerable plaque by reducing the fibrous cap stresses. A polymeric sleeve having first and second ends interconnects a first metallic stent and a second metallic stent. The first end is bonded to a distal end region of the first stent and the second end to a proximal end region of the second stent. The polymeric sleeve can be loaded with a therapeutic drug or agent to further control local thrombosis and / or induce healing if the plaque fibrous cap ruptures during or after implantation. Methods of making an intravascular stent assembly for the treatment of vulnerable plaque are also provided.

Description

BACKGROUND OF THE INVENTION[0001]The present invention relates to vascular repair devices, and in particular to intravascular stents, which are adapted to be implanted into a patient's body lumen, such as a blood vessel or coronary artery, for the treatment of unstable or vulnerable, human atherosclerotic plaque.[0002]Currently, the treatment of unstable or vulnerable plaque presents a significant therapeutic challenge to medical investigators. Vulnerable plaque is characterized by a basic lesion which is a raised plaque beneath the innermost arterial layer, the intima. Atherosclerotic plaques are primarily composed of varying amounts of long chain extracellular matrix (ECM) proteins that are synthesized by smooth muscle cells. The other primary lesion component of atherosclerotic plaque includes lipoproteins, existing both extracellularly and within foam cells derived primarily from lipid-laden macrophages. In a more advanced lesion, a necrotic core may develop, consisting of lipid...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61F2/06A61F2/82
CPCA61F2/91A61F2/915A61F2002/826A61F2220/005A61F2250/0067A61F2002/828A61F2002/91558
Inventor CHEN, YUNG-MINGFEEZOR, CHRISTOPHERKILPATRICK, DEBORAHPRABHU, SANTOSH
Owner ABBOTT CARDIOVASCULAR
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products