Supramolecular polymers from low-melting, easily processable building blocks

Inactive Publication Date: 2010-03-25
SUPRAPOLIX
View PDF53 Cites 23 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0010]The invention relates to 4H-unit containing building blocks with lower melting points than 4H-unit building blocks presently known in the art that dramatically improve the process of making polymeric materials that comprise 4H-units and thereby form supramolecular polymers. Furthermore, the novel supramolecular polymers can also be prepared from the precursors of the 4H-unit building blocks. As the introduced building blocks allow synt

Problems solved by technology

However, these polymers are obtained by reaction in chloroform or toluene, both toxic organic solvents, and need prolonged reaction times of several hours in order to reach completion.
However, complex chemistry has to be used to prepare the mono

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Supramolecular polymers from low-melting, easily processable building blocks
  • Supramolecular polymers from low-melting, easily processable building blocks
  • Supramolecular polymers from low-melting, easily processable building blocks

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0073]

[0074]Methyl-4-methyl-3-oxo-valerate (83.0 g) and guanidine carbonate (103.8 g) are heated overnight under a nitrogen atmosphere in ethanol (500 mL) at an oil bath temperature of 80° C. The yellow reaction mixture is evaporated down, ice water is added and the pH is brought to 6 by addition of acetic acid. The white precipitate is filtered, washed with ice water and dried in vacuo. Yield of isocytosine: 61.5 g (70%). 1H NMR (400 MHz, DMSO-d6): δ 10.6 (1H), 6.4 (2H), 5.4 (1H), 2.5 (1H), 1.1 (6H).

example 2

[0075]

[0076]Methyl-4,4-dimethyl-3-oxo-pentanoate (50.0 g) and guanidine carbonate (56.9 g) are heated overnight under a nitrogen atmosphere in ethanol (400 mL) at an oil bath temperature of 80° C. The reaction mixture is filtered, the filtrate is evaporated down, water (50 mL) is added and the pH is brought to 6 by addition of acetic acid. The white precipitate is filtered, washed with several portions of water and dried in vacuo to give a quantitative yield of isocytosine product. 1H NMR (400 MHz, DMSO-d6): δ 10.6 (1H), 6.4 (2H), 5.45 (1H), 1.1 (9H).

example 3

[0077]

[0078]Methyl-propionyl acetate (102.6 g) and guanidine carbonate (142 g) are heated overnight under a nitrogen atmosphere in ethanol (600 mL) at an oil bath temperature of 80° C. The reaction mixture is evaporated down, water is added and the pH is brought to 6 by addition of acetic acid. The white precipitate is filtered, washed with several portions of water and dried in vacuo to give a 90% yield of product. 1H NMR (400 MHz, DMSO-d6): δ 10.6 (1H), 6.4 (2H), 5.4 (1H), 2.3 (2H), 1.1 (3H).

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Melting pointaaaaaaaaaa
Melting pointaaaaaaaaaa
Login to view more

Abstract

PCT The present invention relates to a supramolecular polymer comprising 1-50 4H-units, said supramolecular polymer being obtainable by reacting at least one monomeric building block with a prepolymer. The present invention further relates to articles or compositions comprising the supramolecular polymer, in particular articles or compositions selected from the group consisting of decorative, thermo-reversible, or self-healing coatings, adhesive compositions, sealing compositions, thickeners, gelators and binders.

Description

FIELD OF THE INVENTION[0001]The invention relates to supramolecular polymers comprising quadruple hydrogen bonding units that are preferably obtained via reaction in the melt. In this reaction, building blocks containing (precursors of) quadruple hydrogen bonding groups are reacted with prepolymers of choice at temperatures below 150° C. The resulting supramolecular polymers show unique new characteristics due to the presence of additional physical interactions between the polymer chains that are based on multiple hydrogen bonding interactions (supramolecular interactions) and benefit from easier and faster preparation using known reactive-processing techniques.BACKGROUND OF THE INVENTION[0002]This invention relates to supramolecular polymers comprising quadruple hydrogen bonding units that are capable of forming at least four H-bridges with each other in a row leading to physical interactions between different polymer chains. The physical interactions originate from multiple hydrog...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): C09D139/04C08F226/06
CPCC08G18/10C08G18/3212C08G18/3848C08G18/4238C08G18/4277C08G18/73C08G77/388C08G83/008C08G18/7887C08G64/42C08G18/8108
Inventor HOORNE-VAN GEMERT, GABY MARIA LEONARDAJANSSEN, HENRICUS MARIEMEIJER, EGBERT WILLEMBOSMAN, ANTON WILLEM
Owner SUPRAPOLIX
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products