Loc device with parallel incubation and parallel nucleic acid amplification functionality

a technology of nucleic acid amplification and locator, which is applied in the field of diagnostic devices, can solve the problems of slow growth of this type of testing in the clinical laboratory, reduced sensitivity, and high degree of non-specific binding, and achieve the effects of improving the versatility of assays, increasing the informational content of analytical outcomes, and increasing the signal-to-noise ratio and reliability of assay systems

Inactive Publication Date: 2011-12-22
GENEASYS
View PDF6 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0106]The easily usable, mass-producible, and inexpensive LOC device accepts a biological sample through its sample inlet, performs parallel preprocessing of the sample in its parallel incubation section, and performs parallel amplification of the target genetic sequences in the sample in its parallel nucleic acid amplification section, utilizing reagents stored in the LOC device's reagent reservoirs.
[0107]In the incubation section the genetic material undergo various types of preprocessing, like nucleic acid restriction and ligation of adaptor primers, to provide optimal or necessary conditions for the subsequent analytical stages, increasing the informational content of the analytical outcomes and increasing the sensitivity, signal-to-noise-ration, and reliability of the assay system. Furthermore, the parallel incubation chambers allow separate nucleic acid templates or template groups to optimally undergo separate enzymatic reactions with the consequent improvement in assay versatility.
[0108]The amplification of target nucleic acid sequences increases the sensitivity and signal-to-noise ratio of the assay system. Furthermore, the parallel amplification chambers allow separate targets or target groups to optimally use separate primer pairs or separate groups of primer pairs and also to use separate optimal amplification parameters, with the consequent increase in assay sensitivity, signal-to-noise-ratio, and reliability.
[0109]The reagent reservoirs, being integral to the LOC device and holding the assay's total reagent requirements, provide for the low system component-count and simple manufacturing procedures, leading into an inexpensive assay system.

Problems solved by technology

Insufficient stringency can result in a high degree of nonspecific binding.
Excessive stringency can lead to a failure of appropriate binding, which results in diminished sensitivity.
Despite the advantages that molecular diagnostic tests offer, the growth of this type of testing in the clinical laboratory has been slower than expected and remains a minor part of the practice of laboratory medicine.
This is primarily due to the complexity and costs associated with nucleic acid testing compared with tests based on methods not involving nucleic acids.
However, controlling fluid flow through the LOC device, adding reagents, controlling reaction conditions and so on necessitate bulky external plumbing and electronics.
Connecting a LOC device to these external devices effectively restricts the use of LOC devices for molecular diagnostics to the laboratory setting.
The cost of the external equipment and complexity of its operation precludes LOC-based molecular diagnostics as a practical option for point-of-care settings.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Loc device with parallel incubation and parallel nucleic acid amplification functionality
  • Loc device with parallel incubation and parallel nucleic acid amplification functionality
  • Loc device with parallel incubation and parallel nucleic acid amplification functionality

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

Overview

[0237]This overview identifies the main components of a molecular diagnostic system that incorporates embodiments of the present invention. Comprehensive details of the system architecture and operation are set out later in the specification.

[0238]Referring to FIGS. 1, 2, 3, 123 and 124, the system has the following top level components:

[0239]Test modules 10 and 11 are the size of a typical USB memory key and very cheap to produce. Test modules 10 and 11 each contain a microfluidic device, typically in the form of a lab-on-a-chip (LOC) device 30 preloaded with reagents and typically more than 1000 probes for the molecular diagnostic assay (see FIGS. 1 and 123). Test module 10 schematically shown in FIG. 1 uses a fluorescence-based detection technique to identify target molecules, while test module 11 in FIG. 123 uses an electrochemiluminescence-based detection technique. The LOC device 30 has an integrated photosensor 44 for fluorescence or electrochemiluminescence detection...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
areaaaaaaaaaaa
areaaaaaaaaaaa
temperatureaaaaaaaaaa
Login to view more

Abstract

A lab-on-a-chip (LOC) device for genetic analysis of a biological sample, the LOC device having an inlet for receiving the sample containing genetic material, a supporting substrate, a plurality of reagent reservoirs, a first incubation section, the first incubation section being in fluid communication with one of the reagent reservoirs containing enzymes for enzymatic reaction with the genetic material, a second incubation section, the second incubation section being in fluid communication with one of the reagent reservoirs containing enzymes for enzymatic reaction with the genetic material in parallel with the first incubation section, a first nucleic acid amplification section downstream of the first incubation section for amplifying nucleic acid sequences in the genetic material, and, a second nucleic acid amplification section downstream of the second incubation section for amplifying nucleic acid sequences in the genetic material in parallel with the first nucleic acid amplification section, wherein, the first incubation section, the second incubation section, the first nucleic acid amplification section and the second nucleic acid amplification section are all supported on the supporting substrate.

Description

FIELD OF THE INVENTION[0001]The present invention relates to diagnostic devices that use microsystems technologies (MST). In particular, the invention relates to microfluidic and biochemical processing and analysis for molecular diagnostics.CO-PENDING APPLICATIONS[0002]The following applications have been filed by the Applicant which relate to the present application:GBS001USGBS002USGBS003USGBS005USGBS006USGSR001USGSR002USGAS001USGAS002USGAS003USGAS004USGAS006USGAS007USGAS008USGAS009USGAS010USGAS012USGAS013USGAS014USGAS015USGAS016USGAS017USGAS018USGAS019USGAS020USGAS021USGAS022USGAS023USGAS024USGAS025USGAS026USGAS027USGAS028USGAS030USGAS031USGAS032USGAS033USGAS034USGAS035USGAS036USGAS037USGAS038USGAS039USGAS040USGAS041USGAS042USGAS043USGAS044USGAS045USGAS046USGAS047USGAS048USGAS049USGAS050USGAS054USGAS055USGAS056USGAS057USGAS058USGAS059USGAS060USGAS061USGAS062USGAS063USGAS065USGAS066USGAS067USGAS068USGAS069USGAS070USGAS080USGAS081USGAS082USGAS083USGAS084USGAS085USGAS086USGAS087USGAS...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): C40B40/06C12M1/34
CPCB01L3/5027Y10T436/25B01L3/502738B01L7/52B01L2200/10B01L2300/023B01L2300/024B01L2300/0636B01L2300/0654B01L2300/0883B01L2300/10B01L2300/1827B01L2400/0406B01L2400/0633B01L2400/0677B01L2400/0688F16K99/003F16K99/0036G01N27/223C12Q1/68Y10T436/107497Y10T436/173845Y10T436/143333Y10T436/11Y10T436/145555Y10T436/203332Y10T436/25375B01L3/502707Y10T137/0352Y10T137/0391Y10T137/1044Y10T137/206Y10T137/2076Y10T137/2202Y02A90/10
Inventor SILVERBROOK, KIAAZIMI, MEHDIFACER, GEOFFREY RICHARD
Owner GENEASYS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products