Method for preparing high-stability solid arsenic minerals by hydrothermal process

A high stability, hydrothermal technology, applied in the field of mineral arsenic fixation, to achieve the effect of small BET specific surface area, low equipment requirements, and wide stable area

Active Publication Date: 2017-06-13
CENT SOUTH UNIV
View PDF7 Cites 5 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0005] Among the currently published patents, the invention patents (CN 102153145 A, CN101952204 A) of Dowa Mining Co., Ltd. in Japan first proposed to use divalent iron as the iron source to process the arsenic-containing solution and prepare scorodite and iron arsenate powder. Arsenic precip

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method for preparing high-stability solid arsenic minerals by hydrothermal process

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0037] The main components in the arsenic solution include: As 60g / L, Sb 1.1g / L, Pb 235ppm, Sn 38.5ppm, Te24.4ppm, NaOH 30g / L.

[0038] A kind of preparation method of highly stable arsenic-fixed mineral, comprises the following steps: arsenic-containing solution adopts the method for catalytic oxidation to As 3+ Oxidized to As 5+ , the control conditions are, the oxygen flow rate is 5L / min, adding KMnO 4 As a catalyst, the molar ratio of As / Mn is controlled at 10:1, and the temperature of the catalytic oxidation system is controlled at 90°C. The results show that As 3+ The conversion rate was 98.45%.

[0039] Adjust the pH value of the oxidized solution to 1.5, and add CaO and Ca(OH) in a continuous feeding mode 2 As an arsenic precipitating agent, the Ca / As molar ratio is 5, the settling time is 6 hours, and the reaction temperature is 60° C. to generate calcium arsenate. The synthesis of arsenic-fixing minerals adopts the hydrothermal method, and the control conditions ...

Embodiment 2

[0041] The main components in the arsenic solution include: As 76g / L, Sb 0.8g / L, Pb 96.7ppm, Sn 27.5ppm, Te38.7ppm, NaOH 25g / L.

[0042] A method for preparing a highly stable arsenic-fixing mineral, comprising the following steps: the arsenic-containing solution adopts a catalytic oxidation method to convert As 3+ Oxidized to As 5+ , the control conditions are, oxygen flow rate is 10L / min, adding KMnO 4 As a catalyst, the molar ratio of As / Mn is controlled at 40:1, and the temperature of the catalytic oxidation system is controlled at 30°C. The results show that As 3+ The conversion rate is 92.31%;

[0043] Adjust the pH value of the oxidized solution to 2, and add CaO and Ca(OH) in a continuous feeding mode 2 As the arsenic precipitating agent, the Ca / As molar ratio is 8, the settling time is 8 hours, and the reaction temperature is 90° C. to generate calcium arsenate. The synthesis of arsenic-fixing minerals adopts the hydrothermal method, and the control conditions are...

Embodiment 3

[0045] The main components in the arsenic solution include: As 50g / L, Sb 1.8g / L, Pb 186ppm, Sn 34.7ppm, Te27.8ppm, NaOH 5g / L.

[0046] A method for preparing a highly stable arsenic-fixing mineral, comprising the following steps: the arsenic-containing solution adopts a catalytic oxidation method to convert As 3+ Oxidized to As 5+ , the control conditions are, oxygen flow rate is 1L / min, adding KMnO 4 As a catalyst, the molar ratio of As / Mn is controlled at 20:1, and the temperature of the catalytic oxidation system is controlled at 120°C. The results show that As 3+ The conversion rate is 89.36%

[0047] Adjust the pH value of the oxidized solution to 1.5, and add CaO and Ca(OH) in a continuous feeding mode 2 As an arsenic precipitating agent, the Ca / As molar ratio is 5, the settling time is 10 hours, and the reaction temperature is 60° C. to generate calcium arsenate. The synthesis of arsenic-fixing minerals adopts the hydrothermal method, and the control conditions are ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention relates to a method for preparing high-stability solid arsenic minerals by a hydrothermal process. Arsenic is removed from a high-arsenic solution and solidified, and harmless treatment is carried out on the arsenic-containing solution. According to the method, trivalent arsenic in the arsenic-containing solution is changed into pentavalent arsenic through catalytic oxidation; and after oxidation, the high-stability solid arsenic minerals are obtained by synthesizing the solution by a lime arsenic precipitation process and the hydrothermal process, and the high-stability solid arsenic minerals can be directly stacked. First, calcium arsenate is obtained by the lime arsenic precipitation process, and then, the calcium arsenate is converted to the high-stability solid arsenic minerals by adopting the hydrothermal process. Toxicity extraction meets the Identification Standards for Solid Wastes and Identification Standards for Extraction Toxicity GB5085.3-2007. The technical process is short, and the arsenic precipitation effect is great. After the arsenic is precipitated, the solution can be directly discharged, and the stability of the synthesized solid arsenic minerals is high. The solid arsenic minerals can be stably stacked in a wide pH value range which is between 2 and 11 under a strong reduction condition.

Description

technical field [0001] The invention belongs to the technical field of mineral arsenic fixation and relates to a preparation method of highly stable arsenic fixation mineral. Background technique [0002] Arsenic is a highly toxic element with high carcinogenicity, and is widely associated in various non-ferrous metal smelting process systems. In the past 30 years, with the rapid development of my country's nonferrous metal industry, the problem of arsenic pollution has become more and more serious, seriously threatening people's lives and health. Therefore, the research on arsenic pollution control is an urgent and significant topic. [0003] At present, arsenic fixation technologies mainly include encapsulation and mineral arsenic fixation. Encapsulation is to use cement, glass and other materials to coat arsenic-containing materials so that they can be stored stably. This method has a large amount of solid waste and high cost, making it difficult to be widely used. Mi...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): A62D3/33A62D101/43
Inventor 刘智勇刘志宏李启厚王祖林周亚明李玉虎宋柯舟
Owner CENT SOUTH UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products