A lateral double-diffusion mos device
A MOS device, lateral double diffusion technology, applied in semiconductor devices, electrical components, circuits, etc., can solve the problems of substrate depletion, substrate-assisted depletion, superjunction LDMOS effect, etc., to achieve uniform electric field distribution, The effect of increasing the reverse blocking voltage
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
Embodiment 1
[0016] In this embodiment, the semiconductor of the first conductivity type is a P-type semiconductor, the semiconductor of the second conductivity type is an N-type semiconductor, and the charges stored in the polysilicon island 212 are negative charges.
[0017] A kind of lateral double diffusion MOS device, comprises P-type semiconductor substrate 201 and the P-type semiconductor body region 203 and N-type semiconductor drift region 202 that are arranged on the upper surface of P-type semiconductor substrate 201, P-type semiconductor body region 203 and N-type The semiconductor drift region 202 is side contacted; the inner upper surface of the P-type semiconductor body region 203 has an N-type semiconductor source region 205 and a highly doped P-type semiconductor body contact region 204; the N-type semiconductor source region 205 and the highly doped P The P-type semiconductor body contact region 204 is in direct contact with the metal source 207 located on its upper surfac...
Embodiment 2
[0023] In this embodiment, the semiconductor of the first conductivity type is an N-type semiconductor, the semiconductor of the second conductivity type is a P-type semiconductor, and the charges stored in the polysilicon island 212 are positive charges.
[0024]A lateral double-diffused MOS device, comprising an N-type semiconductor substrate 201 and an N-type semiconductor body region 203 and a P-type semiconductor drift region 202 arranged on the upper surface of the N-type semiconductor substrate 201, and an N-type semiconductor body region 203 and a P-type semiconductor region. The semiconductor drift region 202 is side contacted; the upper surface of the N-type semiconductor body region 203 has a P-type semiconductor source region 205 and a highly doped N-type semiconductor body contact region 204; the P-type semiconductor source region 205 and the highly doped N The N-type semiconductor body contact region 204 is in direct contact with the metal source 207 located on it...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com