Directly compressible sustained release formulation containing microcrystalline cellulose

a microcrystalline cellulose and formulation technology, applied in the field of new excipients for use, can solve the problems of segregation, limited use of direct compression, and the size of direct compression tablets as a manufacturing method,

Inactive Publication Date: 2005-07-07
J RETTENMAIER & SOEHNE GMBH CO KG ROSENBERG
View PDF3 Cites 55 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

The use of direct compression is limited to those situations where the drug or active ingredient has a requisite crystalline structure and physical characteristics required for formation of a pharmaceutically acceptable tablet.
Another limitation of direct compression as a method of tablet manufacture is the size of the tablet.
Segregation is a potential problem with the direct compression method.
Unfortunately, currently-available microcrystalline cellulose does not hold to the typical principle that the amount of filler / binder needed in wet granulation is less than that in direct compression.
It is known that the exposure of the microcrystalline cellulose to moisture in the wet granulation process severely reduces the compressibility of this excipient.
The loss of compressibility of microcrystalline cellulose is particularly problematic where the formulation dictates that the final product will be relatively large in the environment of use.
The additional amount of microcrystalline cellulose needed adds cost to the preparation, but more importantly adds bulk, making the product more difficult to swallow.
The loss of compressibility of microcrystalline cellulose when exposed to wet granulation has long been considered a problem in the art for which there has been no satisfactory solution.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0025] Excipients of the present invention comprise Microcrystalline Cellulose (MCC) and augmenting agents. Microcrystalline cellulose is a well-known tablet diluent, binder and disintegrant. Its chief advantage over other excipients is that it can be directly compressed into self-binding tablets which disintegrate rapidly when placed into water. This widely-used ingredient is prepared by partially depolymerizing cellulose obtained as a pulp from fibrous plant material with dilute mineral acid solutions. Following hydrolysis, the hydrocellulose thereby obtained is purified via filtration and an aqueous slurry is spray dried to form dry, white odorless, tasteless crystalline powder of porous particles of various sizes. Another method of preparing microcrystalline cellulose is disclosed in U.S. Pat. No. 3,141,875. This reference discloses subjecting cellulose to the hydrolytic action of hydrochloric acid at boiling temperatures so that amorphous cellulosic material can be removed and ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
timeaaaaaaaaaa
average primary particle sizeaaaaaaaaaa
specific volumeaaaaaaaaaa
Login to view more

Abstract

The present invention provides an improved process for the preparation of a agglomerated solid dosage form, comprising: (1) preparing an aqueous slurry of (a) microcrystalline cellulose; (b) a microcrystalline cellulose compressibility augmenting agent which (i) physically restricts the proximity of the interface between adjacent cellulose surfaces; (ii) inhibits interactions between adjacent cellulose surfaces, for example, via the creation of a hydrophobic boundary at cellulose surfaces; or (iii) accomplishes both (i) and (ii) above; and (c) an active agent; (2) thereafter drying the resultant aqueous slurry in a manner which inhibits quasi-hornification, thereby obtaining an agglomerated material which is directly compressible into a solid dosage form.

Description

BACKGROUND OF THE INVENTION [0001] The present invention relates to a novel excipient for use in the manufacture of pharmaceuticals, and in particular, solid dosage forms such as tablets which include one or more active ingredients. [0002] In order to prepare a solid dosage form containing one or more active ingredients (such as drugs), it is necessary that the material to be compressed into the dosage form possess certain physical characteristics which lend themselves to processing in such a manner. Among other things, the material to be compressed must be free-flowing, must be lubricated, and, importantly, must possess sufficient cohesiveness to insure that the solid dosage form remains intact after compression. [0003] In the case of tablets, the tablet is formed by pressure being applied to the material to be tableted on a tablet press. A tablet press includes a lower punch which fits into a die from the bottom and a upper punch having a corresponding shape and dimension which en...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A61K9/20A61K9/22
CPCY10S977/906A61K9/2054
Inventor STANIFORTH, JOHN N.HUNTER, EDWARD A.SHERWOOD, BOB E.DAVIDSON, CLIFFORD M.
Owner J RETTENMAIER & SOEHNE GMBH CO KG ROSENBERG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products