Direct epoxidation process using modifiers

a technology of epoxidation process and modifier, applied in the field of epoxidation process, can solve the problems of prone to produce non-selective by-products, silver catalysts have not proved useful in commercial epoxidation of higher olefins, etc., and achieve the effect of reducing alkane by-products

Inactive Publication Date: 2006-05-04
LYONDELL CHEM TECH LP
View PDF10 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Unfortunately, the silver catalyst has not proved useful in commercial epoxidation of higher olefins.
One disadvantage of the described direct epoxidation catalysts is that they are prone to produce non-selective by-products such as glycols or glycol ethers formed by the ring-opening of the epoxide product or alkane by-product formed by the hydrogenation of olefin.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

Catalyst Preparation

[0027] TS-1 can be made according to any known literature procedure. See, for example, U.S. Pat. No. 4,410,501, DiRenzo, et. al., Microporous Materials (1997), Vol. 10, 283, or Edler, et. al., J. Chem. Soc., Chem. Comm. (1995), 155.

[0028] Catalyst 1: TS-1 (a 1 / 16″ extrudate: 80 wt. % TS1; 20 wt. % silica) is calcined in air at 550-600° C., and then recalcined at 350° C. for 8 hours. The calcined TS-1 (9.17 g) and deionized water (25 g) are added to a 100-mL round-bottom flask, then the pH of the solution is raised to 7.43 upon addition of a few drops of a 2.5 wt. % NH4OH solution. An aqueous solution of (NH3)4Pd(NO3)2 (0.1913 g of (NH3)4Pd(NO3)2 in 2.130 g of distilled water) is added to the flask over a three-minute period, while swirling the flask. The slurry is then placed on a rotovap at 30° C. and 30 rpm for 2 hours while the pH is adjusted every 15 minutes to about 7.5. The catalyst is then filtered and the solids are washed three times with deionized wat...

example 2

Propylene Epoxidation Using CO Modifier

[0029] To evaluate the performance of the catalysts prepared in Example 1 in the presence of modifiers, the epoxidation of propylene using oxygen and hydrogen is carried out. The following procedure is employed.

[0030] Catalyst 1 (6.8 g) is added in layers, using quartz chips as a diluent, to a stainless steel Robinson-Mahoney basket. The entire basket is filled with the catalyst / quartz layers so that everything is held stationary in the basket.

[0031] The filled basket is inserted into a 500-cc stainless steel CSTR type reactor with an impeller running down the middle of the basket. Gas and liquid feeds enter the reactor, diffuse through the catalyst basket, and exit through two outlet filters. The reactor is electrically heated to 60-70° C. and pressurized to about 500 psig. An 80 / 20 methanol / water solvent is pumped through the reactor at about 2 mL / min along with a (NH4)H2PO4 buffer (0.25 M aqueous solution) which was pumped at about 1 to 1...

example 3

Propylene Epoxidation Studies with MA and PD Modifier

[0033] Example 2 is repeated with the exception that the basket reactor was empty of catalyst extrudate and quartz chips. Gas, liquid and buffer flows are similar to those described in Example 2. The reaction temperature is 60° C. and pressure is 500 psig. Initially, residual catalyst dust in the reactor produces a propane make of approximately 200 to 250 ppmv of the propylene in the feed. A gas mixture containing about 2000 ppmv of MA and 2000 ppmv of PD in nitrogen is then added to the feed gas at around 150 sccm flow rate. Following addition of the MA and PD mixture, propane make decreases by about 90% compared to results prior to addition of MA and PD. See Table 2 for the results. This experiment shows that MA and PD can effectively block the less desirable hydrogenation of propylene to propane.

TABLE 1EFFECT OF CO ON PROPANE AND POE MAKEReactorCOPropylenePropaneProduc-ReactorTemp (° C.)(ppmv)(mole %)(ppmv)tivity 1Feed6007.5...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
molar ratiosaaaaaaaaaa
temperaturesaaaaaaaaaa
temperaturesaaaaaaaaaa
Login to view more

Abstract

The invention is a process for epoxidizing an olefin with hydrogen and oxygen in the presence of a noble metal-containing titanium or vanadium zeolite and a modifier selected from the group consisting of carbon monoxide, methylacetylene, and propadiene. The process results in significantly reduced alkane by-product formed by the hydrogenation of olefin compared to processes that do not use the carbon monoxide, methylacetylene, and / or propadiene modifier.

Description

FIELD OF THE INVENTION [0001] This invention relates to an epoxidation process which comprises reacting olefin, hydrogen, and oxygen in the presence of a noble metal-containing titanium or vanadium zeolite catalyst and a modifier selected from the group consisting of carbon monoxide, methylacetylene, and / or propadiene. Surprisingly, the process results in lower selectivity to undesired alkane byproduct formed by the hydrogenation of olefin compared to processes without the modifier. BACKGROUND OF THE INVENTION [0002] Many different methods for the preparation of epoxides have been developed. Generally, epoxides are formed by the reaction of an olefin with an oxidizing agent in the presence of a catalyst. The production of propylene oxide from propylene and an organic hydroperoxide oxidizing agent, such as ethyl benzene hydroperoxide or tert-butyl hydroperoxide, is commercially practiced technology. This process is performed in the presence of a solubilized molybdenum catalyst, see U...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): C07D301/06
CPCC07D301/06
Inventor KAMINSKY, MARK P.
Owner LYONDELL CHEM TECH LP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products