Method and apparatus for manufacturing internally coated glass tubes

a technology of glass tubes and inner surfaces, which is applied in the direction of glass making apparatus, glass shaping apparatus, nanotechnology, etc., can solve the problems of many limitations, glass types are often not able to meet the required specifications, and the manufacture of such glasses is often relatively expensive, so as to achieve rapid faster and complete particle reaction, and large oxygen content

Inactive Publication Date: 2006-11-23
SCHOTT AG
View PDF17 Cites 67 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0023] According to a further embodiment, an aerosol is formed in a process gas which is blown into the bag of softened glass. This process gas may be, in particular, CO2, noble gases or mixtures thereof, to which oxygen can also be added in a suitable concentration. However, the process gas can in principle also have a larger oxygen content compared to the atmosphere, even to the extent of being pure oxygen, which can be advantageous for the further reaction of the aerosol particles in the hot forming process.
[0024] According to a further embodiment, an aerosol is introduced through an outlet opening at the front end of a forming body, over which the glass melt is drawn. For this purpose, the forming body suitably has an axial inner bore so that the aforementioned outlet ope...

Problems solved by technology

However, the manufacturing of such glasses is frequently relatively expensive.
Furthermore, such glass types are often not able to comply with the required specifications, particularly with regard to their formability into hollow bodies at the lowest possible temperatures.
Methods of this type, however, are subject to numerous limitations.
The cost for suitable modification of the inner surface is therefore shifted onto the manufacturer of the hollow formed glass body, which is frequently undesirable for reasons of cost and suitability.
Due to the usually fundamentally different manufacturing parameters, the principles applied to discontinuous manufacturing methods cannot be transferred to continuous manufacturing methods, or cannot be transferred without further effort, so that they do not offer any inspiration to persons skilled in the art for improving continuous or semi-continuous ...

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method and apparatus for manufacturing internally coated glass tubes
  • Method and apparatus for manufacturing internally coated glass tubes
  • Method and apparatus for manufacturing internally coated glass tubes

Examples

Experimental program
Comparison scheme
Effect test

exemplary embodiment 1

[0043] In this exemplary embodiment, a glass tube made of Fiolax was internally coated. The tube was drawn at a drawing speed of 0.733 metres per second and a throughput rate of 670 kg per hour to an outer diameter of 30.0 mm and a wall thickness of 1.20 mm. The cutting length of the glass tubes was 158 cm. The hydrolytic resistance was ascertained with a test to RS-TA 2010, as described below. Furthermore, the internal coating of the glass tube was tested by means of SIMS analysis (secondary ion mass spectroscopy) to a depth of approximately 160 nm. There was no substantial change in the glass composition. The layer thicknesses achieved were in the range of 50 nm to 100 nm.

[0044] The aerosols were formed from finely ground or nanoscale powders of organometallic compounds or metal oxides. Any metals could be used with the exception of the alkali metals. The organometallic compounds included, in particular, the citrates, tartrates and lactates. The metal oxides that were investigate...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Login to view more

Abstract

The invention relates to a method for manufacturing a glass tube with a coated inner surface by drawing a glass melt (5) to a bag (8) of softened glass and hot forming to a glass tube (9). During the process a substance is introduced into the bag (8) of softened glass. According to the invention the substance is introduced as an aerosol and the inner surface is coated by means of the substance during the hot forming. The method permits economical internal coating with a continuous glass drawing method. The use of aggressive chemical substances for internal coating can be dispensed with according to the invention. As a result, for example, internally coated glass tubes with improved hydrolytic resistance can be manufactured. The invention also relates to a suitable apparatus for manufacturing internally coated glass tubes and the use of glass tubes manufactured by this means for further processing to a hollow, internally coated formed glass body, for example, as primary packaging in the pharmaceuticals field.

Description

FIELD OF THE INVENTION [0001] The present invention relates in general to the manufacturing of glass tubes having an internally coated inner surface, particularly a chemically or physically modified inner surface, by means of a continuous or semi-continuous glass drawing method. The present invention also relates to the use of such glass tubes as semi-finished products for manufacturing hollow formed glass bodies by further forming the semi-finished product into hollow formed glass bodies. BACKGROUND OF THE INVENTION [0002] Technical applications for glass, for example as a starting material for primary packaging materials in the pharmaceuticals industry, increasingly demand hollow formed glass bodies whose inner surface is as chemically inert as possible in that, for example, it releases as few ions as possible into a substance stored within it or reacts as little as possible with a substance stored in the formed glass body. Glasses with inert surfaces can be prepared by suitable c...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): C03C17/00C03B15/14C03B17/04C03B15/18C03C17/245
CPCC03B17/04C03C17/004C03C17/2456C03C17/245C03C17/22C03B17/00B82Y30/00
Inventor DICK, ERHARDFISCHER, ERICHFUCHS, ROLANDHUMMER, ALEXANDERTRATZKY, STEPHAN
Owner SCHOTT AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products