Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Image based correction for unwanted light signals in a specific region of interest

Inactive Publication Date: 2007-05-24
ABBOTT LABARIES
View PDF23 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0019] The method of this invention can be used to measure a dynamically changing signal and the effect of the dynamically changing signal on a region of interest of a specific reaction. Correcting for the cross-talk inherent in a dynamically changing signal will greatly increase the sensitivity of the method of detection used in an assay employing such signals. The method of this invention does not affect the optical path of the light collected by a detector. The method can be applied directly to an image that is collected for all the regions of interest
[0020] By measuring the signals in the regions of correction, the signal anomaly due to cross-talk can be significantly reduced.

Problems solved by technology

All of these sources of variation can contribute to a dynamically changing error in the optical signal in a given region of interest of the image.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Image based correction for unwanted light signals in a specific region of interest
  • Image based correction for unwanted light signals in a specific region of interest
  • Image based correction for unwanted light signals in a specific region of interest

Examples

Experimental program
Comparison scheme
Effect test

example

[0044] A real time PCR run for HIV was performed on an ABI Prism 7500 instrument (Applied Biosystems, Foster City, Calif.). This instrument utilizes a 96-well plate format with wells arranged in a 12×8 array. The run was configured so that there were 84 wells containing positive samples with a concentration of 1×106 copies / mL and 12 wells not containing positive samples, i.e., negative wells. The negative wells were distributed on the plate to maximize the potential cross-talk from the wells containing positive samples. FIG. 4 illustrates the layout of the plate.

[0045] The ABI Prism 7500 instrument uses a CCD camera and measures fluorescence in five wavelength bands. FIG. 5 shows one image from the end of the PCR run. FIG. 6 shows the same image with the reaction regions of interest and the regions of correction superimposed. In this example, a diagonal array of diamond-shaped regions of correction, each of which contained of 25 pixels, were used. The first reading in the PCR run w...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A method for correcting the signal in an image having a plurality of regions of interest, the method comprising the steps of: (a) providing an image having a plurality of regions of interest, these regions of interest having areas between them; (b) determining a region of correction between at least two regions of interest; (c) calculating a correction signal from the region of correction; and (d) using the correction signal to correct a measured signal from one or more regions of interest. This invention also provides a method for defining a region of correction for use in a method for correcting the signal in an image having a plurality of regions of interest, the defining method comprising the steps of: (a) providing an image having a plurality of regions of interest; (b) extracting geometric information for a plurality of regions of interest; (c) selecting a location between at least two regions of interest; (d) selecting at least one parameter to describe regions of correction; and (e) constructing regions of correction between the at least two regions of interest.

Description

BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] This invention relates to a method for correcting signals detected by a detection system in a diagnostic instrument. [0003] 2. Discussion of the Art [0004] Raw images generated by a diagnostic instrument having a digital image sensor as a detector, such as, for example, the Applied Biosystems Prism 7000 diagnostic instrument, can exhibit an anomaly known as “cross-talk.” Cross-talk refers to the situation where a signal from a given location in the image (for example, a given well in a plate having a plurality of wells, e.g., a 96-well PCR plate), causes a variation in the signal at a different location in the image (for example, a different well in the plate having a plurality of wells). A specific region within an image associated with an independent signal is often referred to as a region of interest (alternatively referred to herein as ROI). Each ROI defines the specific pixels within the image associated with a...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): G06K9/40G06K9/00G16B25/00
CPCG06F19/20G06T7/0081G06T2207/30072G06T7/11G16B25/00
Inventor KOLTERMAN, JAMES C.SHAIN, ERIC B.GRAY, ROBERT C.HUANG, SHIHAICLOHERTY, GAVIN A.
Owner ABBOTT LABARIES
Features
  • Generate Ideas
  • Intellectual Property
  • Life Sciences
  • Materials
  • Tech Scout
Why Patsnap Eureka
  • Unparalleled Data Quality
  • Higher Quality Content
  • 60% Fewer Hallucinations
Social media
Patsnap Eureka Blog
Learn More