Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3238results about "Hybridisation" patented technology

Methods and systems for predicting cancer outcome

The invention provides a molecular marker set that can be used for prognosis of colorectal cancer in a colorectal cancer patient. The invention also provides methods and computer systems for evaluating prognosis of colorectal cancer in a colorectal cancer patient based on the molecular marker set. The invention also provides methods and computer systems for determining chemotherapy for a colorectal cancer patient and for enrolling patients in clinical trials.
Owner:H LEE MOFFITT CANCER CENT & RES INST INC +1

Prediction of prostate cancer progression by analysis of selected predictive parameters

A method for screening individuals at risk for prostate cancer progression is disclosed. The method is useful for evaluating cells from patients at risk for recurrence of prostate cancer following surgery for prostate cancer. Specifically, the method uses specific Markovian nuclear texture factors, alone or in combination with other biomarkers, to determine whether the cancer will progress or lose organ confinement. In addition, methods of predicting the development of fatal metastatic disease by statistical analysis of selected biomarkers is also disclosed. The invention also contemplates a method that uses a neural network to analyze and interpret cell morphology data. Utilizing Markovian factors and other biomarkers as parameters, the network is first trained with a sets of cell data from known progressors and known non-progressors. The trained network is then used to predict prostate cancer progression in patient samples.
Owner:CYTODIAGNOSTICS +3

Process for discriminating between biological states based on hidden patterns from biological data

The invention describes a process for determining a biological state through the discovery and analysis of hidden or non-obvious, discriminatory biological data patterns. The biological data can be from health data, clinical data, or from a biological sample, (e.g., a biological sample from a human, e.g., serum, blood, saliva, plasma, nipple aspirants, synovial fluids, cerebrospinal fluids, sweat, urine, fecal matter, tears, bronchial lavage, swabbings, needle aspirantas, semen, vaginal fluids, pre-ejaculate.), etc. which is analyzed to determine the biological state of the donor. The biological state can be a pathologic diagnosis, toxicity state, efficacy of a drug, prognosis of a disease, etc. Specifically, the invention concerns processes that discover hidden discriminatory biological data patterns (e.g., patterns of protein expression in a serum sample that classify the biological state of an organ) that describe biological states.
Owner:ASPIRA WOMENS HEALTH INC +1

Statistical combining of cell expression profiles

A method for fluorophore bias removal in microarray experiments in which the fluorophores used in microarray experiment pairs are reversed. Further, a method for calculating the individual errors associated with each measurement made in nominally repeated microarray experiments. This error measurement is optionally coupled with rank based methods in order to determine a probability that a cellular constituent is up or down regulated in response to a perturbation. Finally, a method for determining the confidence in the weighted average of the expression level of a cellular constituent in nominally repeated microarray experiments.
Owner:MICROSOFT TECH LICENSING LLC

Method and System for Multi-Scale Anatomical and Functional Modeling of Coronary Circulation

ActiveUS20130132054A1Improve predictive performanceImprove clinical managementChemical property predictionChemical structure searchCoronary arteriesIntervention planning
A method and system for multi-scale anatomical and functional modeling of coronary circulation is disclosed. A patient-specific anatomical model of coronary arteries and the heart is generated from medical image data of a patient. A multi-scale functional model of coronary circulation is generated based on the patient-specific anatomical model. Blood flow is simulated in at least one stenosis region of at least one coronary artery using the multi-scale function model of coronary circulation. Hemodynamic quantities, such as fractional flow reserve (FFR), are computed to determine a functional assessment of the stenosis, and virtual intervention simulations are performed using the multi-scale function model of coronary circulation for decision support and intervention planning.
Owner:SIEMENS HEALTHCARE GMBH +1

System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals

ActiveUS20070184467A1Significant resultMicrobiological testing/measurementProteomicsUniparental disomyEmbryo
A system and method for determining the genetic data for one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Genetic data for the target individual is acquired and amplified using known methods, and poorly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related subjects. In accordance with one embodiment of the invention, incomplete genetic data from an embryonic cell is reconstructed using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without genetic data from haploid cells from one or both parents, and / or genetic data taken from other related individuals. In accordance with another embodiment of the invention, incomplete genetic data from a fetus is acquired from fetal cells, or cell-free fetal DNA isolated from the mother's blood, and the incomplete genetic data is reconstructed using the more complete genetic data from a larger sample diploid cells from one or both parents, with or without genetic data from haploid cells from one or both parents, and / or genetic data taken from other related individuals. In one embodiment, the genetic data can be reconstructed for the purposes of making phenotypic predictions. In another embodiment, the genetic data can be used to detect for aneuploides and uniparental disomy.
Owner:NATERA

Individualized cancer treatments

The invention provides for compositions and methods for predicting an individual's responsitivity to cancer treatments and methods of treating cancer. In certain embodiments, the invention provides compositions and methods for predicting an individual's responsitivity to chemotherapeutics, including platinum-based chemotherapeutics, to treat cancers such as ovarian cancer. Furthermore, the invention provides for compositions and methods for predicting an individual's responsivity to salvage therapeutic agents. By predicting if an individual will or will not respond to platinum-based chemotherapeutics, a physician can reduce side effects and toxicity by administering a particular additional salvage therapeutic agent. This type of personalized medical treatment for ovarian cancer allows for more efficient treatment of individuals suffering from ovarian cancer. The invention also provides reagents, such as DNA microarrays, software and computer systems useful for personalizing cancer treatments, and provides methods of conducting a diagnostic business for personalizing cancer treatments.
Owner:UNIV OF SOUTH FLORIDA +1

Random array of micro-spheres for the analysis of nucleic acids

A method of identifying nucleic acid samples comprising: providing a mircoarray including a substrate coated with a composition including a population of micro-spheres dispersed in a fluid containing a gelling agent or a precursor to a gelling agent and immobilized at random positions on the substrate, at least one sub-population of said population micro-spheres containing an optical barcode generated from at least one colorant associated with the micro-spheres and including a nucleic acid probe sequence; contacting said array with a target nucleic acid sequence; and detecting the color barcode of said sub-population of micro-spheres due to the interaction of said probe nucleic acid sequence and said target nucleic acid sequence.
Owner:CARESTREAM HEALTH INC

Lung cancer prognostics

A method of providing a prognosis of lung cancer is conducted by analyzing the expression-of a group of genes. Gene expression profiles in a variety of medium such as microarrays are included as are kits that contain them.
Owner:VERIDEX LCC

Methods for the identification, assessment, and treatment of patients with cancer therapy

The present invention is directed to the identification of predictive markers that can be used to determine whether patients with cancer are clinically responsive or non-responsive to a therapeutic regimen prior to treatment. In particular, the present invention is directed to the use of certain individual and / or combinations of predictive markers, wherein the expression of the predictive markers correlates with responsiveness or non-responsiveness to a therapeutic regimen. Thus, by examining the expression levels of individual predictive markers and / or predictive markers comprising a marker set, it is possible to determine whether a therapeutic agent, or combination of agents, will be most likely to reduce the growth rate of tumors in a clinical setting.
Owner:MILLENNIUM PHARMA INC

Combinational array for nucleic acid analysis

This invention relates to an array, including a universal micro-array, for the analysis of nucleic acids, such as DNA. The devices and methods of the invention can be used for identifying gene expression patterns in any organism. More specifically, all possible oligonucleotides (n-mers) necessary for the identification of gene expression patterns are synthesized. According to the invention, n is large enough to give the specificity to uniquely identify the expression pattern of each gene in an organism of interest, and is small enough that the method and device can be easily and efficiently practiced and made. The invention provides a method of analyzing molecules, such as polynucleotides (e.g., DNA), by measuring the signal of an optically-detectable (e.g., fluorescent, ultraviolet, radioactive or color change) reporter associated with the molecules. In a polynucleotide analysis device according to the invention, levels of gene expression are correlated to a signal from an optically-detectable (e.g. fluorescent) reporter associated with a hybridized polynucleotide. The invention includes an algorithm and method to interpret data derived from a micro-array or other device, including techniques to decode or deconvolve potentially ambiguous signals into unambiguous or reliable gene expression data.
Owner:CALIFORNIA INST OF TECH

Comprehensive Analysis Pipeline for Discovery of Human Genetic Variation

Systems and methods for analyzing genetic sequence data involve: (a) obtaining, by a computer system, genetic sequencing data pertaining to a subject; (b) splitting the genetic sequencing data into a plurality of segments; (c) processing the genetic sequencing data such that intra-segment reads, read pairs with both mates mapped to the same data set, are saved to a respective plurality of individual binary alignment map (BAM) files corresponding to that respective segment; (d) processing the genetic sequencing data such that inter-segment reads, read pairs with both mates mapped to different segments, are saved into at least a second BAM file; and (e) processing at least the first plurality of BAM files along parallel processing paths. The plurality of segments may correspond to any given number of genomic subregions and may be selected based upon the number of processing cores used in the parallel processing.
Owner:RES INST AT NATIONWIDE CHILDRENS HOSPITAL

Systems and methods for treating, diagnosing and predicting the occurrence of a medical condition

ActiveUS20100184093A1Reliable and accurate image segmentationMedical simulationBioreactor/fermenter combinationsImmunofluorescenceClinical information
Clinical information, molecular information and / or computer-generated morphometric information is used in a predictive model for predicting the occurrence of a medical condition. In an embodiment, a model predicts whether a patient is likely to have a favorable pathological stage of prostate cancer, where the model is based on features including one or more (e.g., all) of preoperative PSA, Gleason Score, a measurement of expression of androgen receptor (AR) in epithelial and stromal nuclei and / or a measurement of expression of Ki67-positive epithelial nuclei, a morphometric measurement of a ratio of area of epithelial nuclei outside gland units to area of epithelial nuclei within gland units, and a morphometric measurement of area of epithelial nuclei distributed away from gland units. In some embodiments, quantitative measurements of protein expression in cell lines are utilized to objectively assess assay (e.g., multiplex immunofluorescence (IF)) performance and / or to normalize features for use within a predictive model.
Owner:AUREON LAB INC +1

Computer-assisted means for assessing lifestyle risk factors

The present invention relates to methods of assessing disease susceptibility associated with dietary and lifestyle risk factors. The invention provides for analysis of alleles at loci of genes associated with lifestyle risk factors, and the disease susceptibility profile of an individual is determined by reference to datasets which further match the risk factor with lifestyle recommendations in order to produce a personalized lifestyle advice plan.
Owner:BODYSYNC

Methods of identifying biological patterns using multiple data sets

Systems and methods for enhancing knowledge discovery from data using multiple learning machines in general and multiple support vector machines in particular. Training data for a learning machine is pre-processed in order to add meaning thereto. Multiple support vector machines, each comprising distinct kernels, are trained with the pre-processed training data and are tested with test data that is pre-processed in the same manner. The test outputs from multiple support vector machines are compared in order to determine which of the test outputs if any represents a optimal solution. Selection of one or more kernels may be adjusted and one or more support vector machines may be retrained and retested. Optimal solutions based on distinct input data sets may be combined to form a new input data set to be input into one or more additional support vector machine. The methods, systems and devices of the present invention comprise use of Support Vector Machines for the identification of patterns that are important for medical diagnosis, prognosis and treatment. Such patterns may be found in many different datasets. The present invention also comprises methods and compositions for the treatment and diagnosis of medical conditions.
Owner:HEALTH DISCOVERY CORP +1

Expression profile algorithm and test for cancer prognosis

The present invention provides a noninvasive, quantitative test for prognosis determination in cancer patients. The test relies on measurements of the tumor levels of certain messenger RNAs (mRNAs). These mRNA levels are inserted into a polynomial formula (algorithm) that yields a numerical recurrence score, which indicates recurrence risk.
Owner:GENOMIC HEALTH INC

Combinatorial array for nucleic acid analysis

This invention relates to an array, including a universal micro-array, for the analysis of nucleic acids, such as DNA. The devices and methods of the invention can be used for identifying gene expression patterns in any organism. More specifically, all possible oligonucleotides (n-mers) necessary for the identification of gene expression patterns are synthesized. According to the invention, n is large enough to give the specificity to uniquely identify the expression pattern of each gene in an organism of interest, and is small enough that the method and device can be easily and efficiently practiced and made. The invention provides a method of analyzing molecules, such as polynucleotides (e.g., DNA), by measuring the signal of an optically-detectable (e.g., fluorescent, ultraviolet, radioactive or color change) reporter associated with the molecules. In a polynucleotide analysis device according to the invention, levels of gene expression are correlated to a signal from an optically-detectable (e.g. fluorescent) reporter associated with a hybridized polynucleotide. The invention includes an algorithm and method to interpret data derived from a micro-array or other device, including techniques to decode or deconvolve potentially ambiguous signals into unambiguous or reliable gene expression data.
Owner:CALIFORNIA INST OF TECH

Binary prediction tree modeling with many predictors and its uses in clinical and genomic applications

The statistical analysis described and claimed is a predictive statistical tree model that overcomes several problems observed in prior statistical models and regression analyses, while ensuring greater accuracy and predictive capabilities. Although the claimed use of the predictive statistical tree model described herein is directed to the prediction of a disease in individuals, the claimed model can be used for a variety of applications including the prediction of disease states, susceptibility of disease states or any other biological state of interest, as well as other applicable non-biological states of interest. This model first screens genes to reduce noise, applies k-means correlation-based clustering targeting a large number of clusters, and then uses singular value decompositions (SVD) to extract the single dominant factor (principal component) from each cluster. This generates a statistically significant number of cluster-derived singular factors, that we refer to as metagenes, that characterize multiple patterns of expression of the genes across samples. The strategy aims to extract multiple such patterns while reducing dimension and smoothing out gene-specific noise through the aggregation within clusters. Formal predictive analysis then uses these metagenes in a Bayesian classification tree analysis. This generates multiple recursive partitions of the sample into subgroups (the “leaves” of the classification tree), and associates Bayesian predictive probabilities of outcomes with each subgroup. Overall predictions for an individual sample are then generated by averaging predictions, with appropriate weights, across many such tree models. The model includes the use of iterative out-of-sample, cross-validation predictions leaving each sample out of the data set one at a time, refitting the model from the remaining samples and using it to predict the hold-out case. This rigorously tests the predictive value of a model and mirrors the real-world prognostic context where prediction of new cases as they arise is the major goal.
Owner:DUKE UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products