Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

362 results about "Single gene" patented technology

Single Gene Disorders A gene codes for a protein, which does a job in the body. ... In some cases, single gene disorders are caused by new (also called de novo) mutations. These mutations happen during egg or sperm formation in the parents, or soon after egg and sperm come together to form an embryo.

Herbicide resistance genes

The subject invention provides novel plants that are not only resistant to 2,4-D and other phenoxy auxin herbicides, but also to aryloxyphenoxypropionate herbicides. Heretofore, there was no expectation or suggestion that a plant with both of these advantageous properties could be produced by the introduction of a single gene. The subject invention also includes plants that produce one or more enzymes of the subject invention alone or “stacked” together with another herbicide resistance gene, preferably a glyphosate resistance gene, so as to provide broader and more robust weed control, increased treatment flexibility, and improved herbicide resistance management options. More specifically, preferred enzymes and genes for use according to the subject invention are referred to herein as AAD (aryloxyalkanoate dioxygenase) genes and proteins. No α-ketoglutarate-dependent dioxygenase enzyme has previously been reported to have the ability to degrade herbicides of different chemical classes and modes of action. This highly novel discovery is the basis of significant herbicide tolerant crop trait opportunities as well as development of selectable marker technology. The subject invention also includes related methods of controlling weeds. The subject invention enables novel combinations of herbicides to be used in new ways. Furthermore, the subject invention provides novel methods of preventing the formation of, and controlling, weeds that are resistant (or naturally more tolerant) to one or more herbicides such as glyphosate.
Owner:CORTEVA AGRISCIENCE LLC

Novel Herbicide Resistance Genes

The subject invention provides novel plants that are not only resistant to 2,4-D and other phenoxy auxin herbicides, but also to aryloxyphenoxypropionate herbicides. Heretofore, there was no expectation or suggestion that a plant with both of these advantageous properties could be produced by the introduction of a single gene. The subject invention also includes plants that produce one or more enzymes of the subject invention alone or “stacked” together with another herbicide resistance gene, preferably a glyphosate resistance gene, so as to provide broader and more robust weed control, increased treatment flexibility, and improved herbicide resistance management options. More specifically, preferred enzymes and genes for use according to the subject invention are referred to herein as AAD (aryloxyalkanoate dioxygenase) genes and proteins. No α-ketoglutarate-dependent dioxygenase enzyme has previously been reported to have the ability to degrade herbicides of different chemical classes and modes of action. This highly novel discovery is the basis of significant herbicide tolerant crop trait opportunities as well as development of selectable marker technology. The subject invention also includes related methods of controlling weeds. The subject invention enables novel combinations of herbicides to be used in new ways. Furthermore, the subject invention provides novel methods of preventing the formation of, and controlling, weeds that are resistant (or naturally more tolerant) to one or more herbicides such as glyphosate.
Owner:CORTEVA AGRISCIENCE LLC

Cloning method for series parallel expression of a plurality of sgRNA based on grading assembling and application

A CRISPR / Cas9 system has an ultrahigh parallel capacity. In order to meet the requirement for expressing a plurality of sgRNA in some cases, the invention provides a quick assembling method for a plurality of parallel expressed sgRNA. The invention utilizes grading Golden Gate reaction to develop a multi-turn amplifying method based on polymerase chain reaction and independent of a carrier, so as to realize the quick connecting assembling for 20 sgRNA within one week. The method for serially assembling a plurality of sgRNA developed by the invention has the advantages of time-saving and labor-saving effect, flexibility, high efficiency and multifunction. The method can be used for quickly assembling 2-20 sgRNA in different quantity onto one carrier. A plurality of parallel expressed sgRNA are utilized to target to a section of DNA, so that the functions of marking and tracking unrepeated sequence chromatin locus in living cells, cooperatively activating or restraining a single gene, simultaneously editing a plurality of genes and simultaneously up-regulating and down-regulating the genes can be achieved. The method can be widely used for editing the gene and understanding the organization structure and dynamic change of chromatin.
Owner:PEKING UNIV

Process of knocking out Wnt3a gene and verification method thereof

The invention discloses a process of knocking out Wnt3a gene and a verification method thereof. The knockout and verification of Wnt3a gene are finished through the following steps: establishment of a Cas9 lentiviral vector for Wnt3a gene, culture and passage of HepG2 cell, lentivirus infection and screening of target cell, verification of gene knockout efficiency through a mispairing enzyme method, cell protein analysis and cell proliferation detection by a CCK-8 method. The invention has the following advantages: the Wnt3a gene is knocked out by establishing a Cas9 double-vector lentivirus system for the first time; Crispr/Cas9 is a technology for accurately editing specific site of the genome of any species, and the cell-level single gene or multiple genes can be knocked out by the technology; compared with other gene editing technologies, the method has the advantages that the targeting accuracy is higher; only if the RNA target sequence is completely matched with the genome sequence, can the Cas9 cut the DNA and realize simultaneous knockout of multiple sites of the target gene; and moreover, the experimental period of vector establishment is short, the time and the cost are remarkably saved, and species limit is avoided.
Owner:AFFILIATED HOSPITAL OF NANTONG UNIV

Methods for using co-regulated genesets to enhance detection and classification of gene expression patterns

The present invention provides methods for enhanced detection of biological response patterns. In one embodiment of the invention, genes are grouped into basis genesets according to the co-regulation of their expression. Expression of individual genes within a geneset is indicated with a single gene expression value for the geneset by a projection process. The expression values of genesets, rather than the expression of individual genes, are then used as the basis for comparison and detection of biological response with greatly enhanced sensitivity. In another embodiment of the invention, biological responses are grouped according to the similarity of their biological profile.
The methods of the invention have many useful applications, particularly in the fields of drug development and discovery. For example, the methods of the invention may be used to compare biological responses with greatly enhanced sensitivity. The biological responses that may be compared according to these methods include responses to single perturbations, such as a biological response to a mutation or temperature change, as well as graded perturbations such as titration with a particular drug. The methods are also useful to identify cellular constituents, particularly genes, associated with a particular type of biological response. Further, the methods may also be used to identify perturbations, such as novel drugs or mutations, which effect one or more particular genesets. The methods may still further be used to remove experimental artifacts in biological response data.
Owner:MICROSOFT TECH LICENSING LLC

Method for simultaneously completing gene locus, chromosome and linkage analysis

ActiveCN105543339AEasy to operateStrong practical feasibilityMicrobiological testing/measurementEmbryoRecurrent abortion
The invention relates to a method for simultaneously completing gene locus, chromosome and linkage analysis. The method concretely and mainly comprises the following steps: collecting an embryo cell sample, amplifying a whole genome, amplifying a target gene mutation locus, establishing a whole genome and target gene mutation locus library, carrying out high flux sequencing, and carrying out data analysis. Multiple-item comprehensive detection is completed through one step by combining a whole genome amplification technology with the high flux sequencing, so respective detection of single-gene genetic disease mutation site, chromosome diseases and linkage analysis through using multiple methods and multiple steps is avoided. The method provided by the invention provides favorable conditions for a tiny amount of a sample, can be used for PGD detection to determine whether an embryo carries a pathogenic gene and chromosome copy number abnormity or not, is also suitable for genetic screening of embryos of recurrent abortion older women, and realizes multi-item detection of a plurality of single samples through one step. The method has the advantages of simple operation, short period and strong feasibility, so promotion and application of the method are facilitated.
Owner:SHANGHAI XUKANG MEDICAL TECH CO LTD +2

Zoonosis tuberculosis fluorescence PCR rapid diagnosis kit

The invention discloses a fluorescence PCR quick diagnosis reagent box of the zoonosis tuberculosis, which belongs to the biological technology field. A group of nucleotide sequence for detecting the zoonosis tuberculosis is the nucleotide sequence shown from the sequence table SEQ ID No.1 to the sequence table SEQ ID No.12. The content disclosed by the invention comprises a fluorescence PCR primer and a probe sequence for a mycobacterium tuberculosis composite group, mycobacterium tuberculosis, cow mycobacterium and fowl mycobacterium, a fluorescence PCR reaction system, a detection program, a reaction parameter and a judging method of various reagent boxes, and the preliminary treatment and the nucleic acid extraction method of various clinic samples of bacteria fluid, milk sample, blood sample, sputum, fecal sample and lymph nodes. The invention provides diagnosis reagent for the zoonosis tuberculosis diagnosis of which the technology method is special, sensitive and quick and the quality is reliable. The adoption of the reagent box provided by the invention can accomplish the whole process from the sample treatment to the fluorescence PCR detection within a day, and the detection sensitivity can reach the single gene copy or the signal bacterial cell.
Owner:INSPECTION & QUARANTINE TECH CENT OF GUANGDONG ENTRY EXIT INSPECTION & QUARANTINE BUREAU +1

Analysis detection system for screening single gene hereditary disease pathogenic gene based on patient clinical symptom data and whole exome sequencing data

ActiveCN110021364ABiostatisticsProteomicsClinical reportMonogenic inheritance
The invention relates to an automated analysis system for automatically screening the single gene disease and hereditary disease pathogenic gene based on patient clinical phenotype information and whole exome sequencing data. The system comprises four automatic analysis modules: (1) an automatic transferring subsystem for automatic transferring from patient clinical report to standardized phenotype term (HPO, human phenotype ontology); (2) an automatic analysis system for screening disease pathogenic gene based on patient standardized phenotype; (3) an automatic analysis system for screening disease pathogenic gene based on patient whole exome sequencing data; and (4) a p value integration system. The system adopts a possibility model to calculate the possibility of developing a certain single gene hereditary disease under the situation that a certain standard phenotype of the patient is provided, and utilizes a computer statistic check method to systematically evaluate the significance level of developing a certain single gene hereditary disease after all standard phenotype of the patient are provided, so as to accordingly achieve the purpose of screening candidate disease pathogenic gene based on clinical standard phenotype.
Owner:上海睿视健康科技有限公司

Construction method of genetic engineering strain for producing shikimic acid

The invention discloses a construction method of a genetic engineering strain for producing shikimic acid. The method comprises the following steps of: 1, constructing an escherichia coli strain of which the aroA gene is knocked out; 2, constructing a recombinant expression plasmid pAR63 containing key enzyme genes aroGFBR, aroE, aroB, aroD, tktA and ppsA in the metabolic pathway of the shikimic acid, so that the genes are subjected to transcriptional control of a tryptophan promoter Ptrp; and 3, transferring the recombinant expression plasmid pAR63 into the escherichia coli strain of which the aroA gene is knocked out to obtain a production strain for expressing the shikimic acid. In the method, the aim of interrupting the metabolism of the shikimic acid is fulfilled by the knock-out of the single gene aroA, a small number of genes are knocked out, the operating difficulty is low, and the expression of the genes is in the state of starting and stopping automatically and is started automatically in the middle and late period without the induction of inducers, so the possibility of adding toxic substances into a culture medium is reduced, and the shikimic acid has high yield.
Owner:河南孟成生物药业股份有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products