Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1439 results about "Mutagenic Process" patented technology

Jump to navigation Jump to search. Mutagenesis /mjuːtəˈdʒɛnɪsɪs/ is a process by which the genetic information of an organism is changed, resulting in a mutation. It may occur spontaneously in nature, or as a result of exposure to mutagens.

Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis

The present invention provides for a modified antibody of class IgG, in which at least one amino acid from the heavy chain constant region selected from the group consisting of amino acid residues 250, 314, and 428 is substituted with another amino acid which is different from that present in the unmodified antibody, thereby altering the binding affinity for FcRn and / or the serum half-life in comparison to the unmodified antibody.
Owner:ABBOTT BIOTHERAPEUTICS CORP

Methods for generating polynucleotides having desired characteristics by iterative selection and recombination

A method for DNA reassembly after random fragmentation, and its application to mutagenesis of nucleic acid sequences by in vitro or in vivo recombination is described. In particular, a method for the production of nucleic acid fragments or polynucleotides encoding mutant proteins is described. The present invention also relates to a method of repeated cycles of mutagenesis, shuffling and selection which allow for the directed molecular evolution in vitro or in vivo of proteins.
Owner:CODEXIS MAYFLOWER HLDG LLC

Systems for in vivo site-directed mutagenesis using oligonucleotides

This disclosure provides several methods to generate nucleic acid mutations in vivo, for instance in such a way that no heterologous sequence is retained after the mutagenesis is complete. The methods employ integrative recombinant oligonucleotides (IROs). Specific examples of the described mutagenesis methods enable site-specific point mutations, deletions, and insertions. Also provided are methods that enable multiple rounds of mutation and random mutagenesis in a localized region. The described methods are applicable to any organism that has a homologous recombination system.
Owner:HEALTH & HUMAN SERVICES DEPT OF THE GOVERNMENT OF THE US SEC THE

Methods for generating polynucleotides having desired characteristics by iterative selection and recombination

A method for DNA reassembly after random fragmentation, and its application to mutagenesis of nucleic acid sequences by in vitro or in vivo recombination is described. In particular, a method for the production of nucleic acid fragments or polynucleotides encoding mutant proteins is described. The present invention also relates to a method of repeated cycles of mutagenesis, shuffling and selection which allow for the directed molecular evolution in vitro or in vivo of proteins.
Owner:CODEXIS MAYFLOWER HLDG LLC

Methods for generating polynucleotides having desired characteristics by iterative selection and recombination

A method for DNA reassembly after random fragmentation, and its application to mutagenesis of nucleic acid sequences by in vitro or in vivo recombination is described. In particular, a method for the production of nucleic acid fragments or polynucleotides encoding mutant proteins is described. The present invention also relates to a method of repeated cycles of mutagenesis, shuffling and selection which allow for the directed molecular evolution in vitro or in vivo of proteins.
Owner:CODEXIS MAYFLOWER HLDG LLC

Method for generating a library of oligonucleotides comprising a controlled distribution of mutations

Methods are disclosed for producing libraries of nucleic acid molecules which libraries are derived from a nucleic acid template. The libraries comprise variant nucleic acids which are produced from a mutagenesis strategy using, e.g., a plurality of defined mutagenic and / or non-mutagenic primers and specific reaction conditions which favor the production of varied combinatorial mutants.
Owner:GENENCOR INT INC

Methods for generating polynucleotides having desired characteristics by iterative selection and recombination

InactiveUS6995017B1Enhance rate of recombinationEnhancing recombinationSugar derivativesMicrobiological testing/measurementMutated proteinNucleotide
A method for DNA reassembly after random fragmentation, and its application to mutagenesis of nucleic acid sequences by in vitro or in vivo recombination is described. In particular, a method for the production of nucleic acid fragments or polynucleotides encoding mutant proteins is described. The present invention also relates to a method of repeated cycles of mutagenesis, shuffling and selection which allow for the directed molecular evolution in vitro or in vivo of proteins.
Owner:CODEXIS MAYFLOWER HLDG LLC

Vitro evolution in microfluidic systems

The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalising genetic elements into microcapsules; and (b) sorting the genetic elements which express the gene product having the desired activity; wherein at least one step is under microfluidic control. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE +1

Methods for generating polynucleotides having desired characteristics by iterative selection and recombination

A method for DNA reassembly after random fragmentation, and its application to mutagenesis of nucleic acid sequences by in vitro or in vivo recombination is described. In particular, a method for the production of nucleic acid fragments or polynucleotides encoding mutant proteins is described. The present invention also relates to a method of repeated cycles of mutagenesis, shuffling and selection which allow for the directed molecular evolution in vitro or in vivo of proteins.
Owner:CODEXIS MAYFLOWER HLDG LLC

Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis

ActiveUS20050032114A1Reducing FcRn binding affinityReduced half-lifeAnimal cellsSugar derivativesHalf-lifeAntibody
The present invention provides for a modified antibody of class IgG, in which at least one amino acid from the heavy chain constant region selected from the group consisting of amino acid residues 250, 314, and 428 is substituted with another amino acid which is different from that present in the unmodified antibody, thereby altering the binding affinity for FcRn and / or the serum half-life in comparison to the unmodified antibody.
Owner:ABBOTT BIOTHERAPEUTICS CORP

Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis

The present invention provides for a modified antibody of class IgG, in which at least one amino acid from the heavy chain constant region selected from the group consisting of amino acid residues 250, 314, and 428 is substituted with another amino acid which is different from that present in the unmodified antibody, thereby altering the binding affinity for FcRn and / or the serum half-life in comparison to the unmodified antibody.
Owner:ABBOTT BIOTHERAPEUTICS CORP

Optical sorting method

The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalising genetic elements into microcapsules; (b) expressing the genetic elements to produce their respective gene products within the microcapsules; (c) sorting the genetic elements which produce the gene product having the desired activity using a change in the optical properties of the genetic elements. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.
Owner:MEDICAL RESEARCH COUNCIL

Non-stochastic generation of genetic vaccines and enzymes

InactiveUS6713279B1Improve abilitiesPotent and direct effect on proliferation and Ig-synthesisAnimal cellsHydrolasesAntigenBiological property
This invention provides methods of obtaining novel polynucleotides and encoded polypeptides by use of non-stochastic methods of directed evolution (DirectEvolution(TM)). These methods include non-stochastic polynucleotide site-saturation mutagenesis (Gene Site Saturation Mutagenesis(TM)) and non-stochastic polynucleotide reassembly (GeneReassembly(TM)). Through use of the claimed methods, genetic vaccines, enzymes, and other desirable molecules can be evolved towards desirable properties. For example, vaccine vectors can be obtained that exhibit increased efficacy for use as genetic vaccines. Vectors obtained by using the methods can have, for example, enhanced antigen expression, increased uptake into a cell, increased stability in a cell, ability to tailor an immune response, and the like. This invention provides methods of obtaining novel enzymes that have optimized physical & / or biological properties. Furthermore, this invention provides methods of obtaining a variety of novel biologically active molecules, in the fields of antibiotics, pharmacotherapeutics, and transgenic traits.
Owner:BP CORP NORTH AMERICA INC

Random Mutagenesis And Amplification Of Nucleic Acid

InactiveUS20080234142A1Enhance degeneracyPromote heterologous bindingHydrolasesLibrary creationNucleotideNucleic acid sequencing
Owner:GENOPSYS

Vectors for gene mutagenesis and gene discovery

Novel vectors are described that incorporate, inter alia, a novel 3' gene trap cassette which can be used to efficiently trap and identify previously unknown cellular genes. Vectors incorporating the described 3' gene trap cassette find particular application in gene discovery and in the production of mutated cells and animals.
Owner:LEXICON PHARM INC

Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis

The present invention provides for a modified antibody of class IgG, in which at least one amino acid from the heavy chain constant region selected from the group consisting of amino acid residues 250, 314, and 428 is substituted with another amino acid which is different from that present in the unmodified antibody, thereby altering the binding affinity for FcRn and / or the serum half-life in comparison to the unmodified antibody.
Owner:ABBOTT BIOTHERAPEUTICS CORP

Compositions and methods for targeted inactivation of HIV cell surface receptors

Compositions for targeted mutagenesis of cell surface receptors for HIV and methods of their use are provided herein. The compositions include triplex-forming molecules that displace the polypyrimidine strand of target duplex and form a triple-stranded structure and hybrid duplex in a sequence specific manner with the polypurine strand of the target duplex. The triplex-forming molecules include a mixed-sequence “tail” which increases the stringency of binding to the target duplex, improves the frequency of modification at the target site, and reduces the requirement for a polypurine:polypyrimidine stretch. Methods for using the triplex-forming molecules in combination with one or more donor oligonucleotides for targeted modification of sites within or adjacent to genes that encodes cell surface receptors for human immunodeficiency virus (HIV) are also disclosed. Methods for ex vivo and in vivo prophylaxis and therapy of HIV infection using the disclosed compositions are also provided.
Owner:YALE UNIV

Multi-site mutagenesis

The present invention provides compositions and improved methods for multi-site directed mutagenesis and DNA shuffling. The present compositions and methods provide increased mutation frequency and increased number of transformants which allow one to sequence only a few clones in order to identify the correct mutants and to obtain the desired mutant by screening large number of transformants in a short time. Moreover, the inclusion of FEN-1, PEF and optimized buffer and cycling conditions provided in the present invention should also facilitate random mutagenized library construction and the mutagenesis of large or difficult templates.
Owner:AGILENT TECH INC

Reduced codon mutagenesis

Methods and compositions that reduce complexity of libraries of variant biological molecules, that reduce oversampling of these libraries during screening and that improve screening efficiency are provided. Sets of efficient degenerate codon sets are provided that efficiently encode all, or nearly all canonical amino acids. Degenerate oligonucleotides comprising these codons are provided, as are polynucleotide variants. Variant pooling strategies are used during library construction. Logical filtering is applied to select codon sites for mutagenesis, or to select amino acid sets to be incorporated at such sites. Methods for reducing non-optimal oversampling during screening are provided.
Owner:CODEXIS INC

Look-through mutagenesis

InactiveUS20050136428A1Highly efficient and accurate systematic evaluationImproving overall structure and functionPeptide librariesHydrolasesSingle-Chain AntibodiesAntibody fragments
A method of mutagenesis by which a predetermined amino acid is introduced into each and every position of a selected set of positions in a preselected region (or several different regions) of a polypeptide to produce a library of polypeptide analogs. The method is based on the premise that certain amino acids play crucial role in the structure and function of proteins. Libraries can be generated which contain only desired polypeptide analogs and are of reasonable size for screening. The libraries can be used to study the role of specific amino acids in polypeptide structure and function and to develop new or improved polypeptides such as antibodies, antibody fragments, single chain antibodies, enzymes, and ligands.
Owner:BIOREN

Targeted chromosomal mutagenasis using zinc finger nucleases

The present invention provides for a method or methods of targeted genetic recombination or mutagenesis in a host cell or organism, and compositions useful for carrying out the method. The targeting method of the present invention exploits endogenous cellular mechanisms for homologous recombination and repair of double stranded breaks in genetic material. The present invention provides numerous improvements over previous mutagenesis methods, such advantages include that the method is generally applicable to a wide variety of organisms, the method is targeted so that the disadvantages associated with random insertion of DNA in-to host genetic material are eliminated, and certain embodiments require relatively little manipulation of the host genetic material for success. Additionally, it provides a method that produces organisms with specific gene modifications in a short period of time.
Owner:UNIV OF UTAH RES FOUND

In vitro sorting method

The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising of the steps of: (a) compartmentalising genetic elements into microcapsules; (b) expressing the genetic elements to produce their respective gene products within the microcapsules; (c) sorting the genetic elements which produce the gene product having a desired activity. The invention enables the in vitro evolution of nucleic acids by repeated mutagenesis and iterative applications of the method of the invention.
Owner:UK RES & INNOVATION LTD

Method for obtaining temperature-sensitive sterile line by performing site-specific mutagenesis on P/TMS12-1 through CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system

The invention discloses a method for obtaining a temperature-sensitive sterile line by performing site-specific mutagenesis on P / TMS12-1 through a CRISPR (clustered regularly interspaced short palindromic repeats) / Cas9 system. The method comprises the following steps: cloning and controlling a Pei'ai 64S temperature-sensitive sterile major gene P / TMS12-1 fragment; designing a target sequence according to the P / TMS12-1 sequence; constructing a pU3-gRNA carrier of the target-containing sequence fragment; constructing a pCRISPR / Cas9 carrier; obtaining a positive transgenic seedling by utilizing the pCRISPR / Cas9 carrier containing the target sequence fragment; screening a mutant plant from the positive transgenic seeding; performing subculture planting on the mutant plant to obtain the temperature-sensitive sterile line without transgenic components. According to the method disclosed by the invention, the CRISPR / Cas9 system is utilized to completely inactivate P / TMS12-1 non-coding RNA, and the temperature-sensitive sterile line without transgenic components is artificially cultivated. The method disclosed by the invention has the advantages of being strong in purposiveness, small in genome damages and capable of avoiding transgenic interference.
Owner:SOUTH CHINA AGRI UNIV

Methods for producing antibody libraries using universal or randomized immunoglobulin light chains

The present invention describes methods for producing antibody libraries, and particularly for increasing antibody library diversity by inducing mutagenesis within the CDR regions of immunoglobulin heavy or light chains that are displayed on the surface of filamentous phage particles comprising the library. The invention also describes oligonucleotides useful for increasing the library diversity, and universal light chains useful in the library production methods.
Owner:THE SCRIPPS RES INST

Universal fibronectin type iii binding-domain libraries

Walk-through mutagenesis and natural-variant combinatorial fibronectin Type III (FN3) polypeptide libraries are described, along with their method of construction and use. Also disclosed are a number of high binding affinity polypeptides selected by screening the libraries against a variety of selected antigens.
Owner:PROTELIX

Reaction buffer composition for nucleic acid replication with packed DNA polymerases

The invention relates to compositions, methods, and kits for nucleic acid replication, including polymerase chain reaction (PCR) and mutagenesis reactions. A buffer composition is provided which allows higher concentrations of DNA polymerase to be used, resulting in greater yield of amplified product and faster reaction kinetics.
Owner:AGILENT TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products