Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

170 results about "Biologic response" patented technology

Biologic response modifiers are a type of disease-modifying anti-rheumatic drug. They target the part of the immune system response that leads to inflammation and joint damage. By doing this, they can improve your condition and help relieve symptoms. SOURCES:

Systems and methods for displaying changes in biological responses to therapy

Systems and methods of this invention display data using pixels with information indicated by color and intensity changes, particularly used for monitoring of physiological variables in real time. For certain methods, physiological data can be acquired by sensors, acquired data can be stored in data frames, data frames can be processed using computer-implemented methods, and processed data frames can be scaled to a display frame for display on a display device. Using such methods, a spot made up of a group of pixels can be updated during a time frame, or cycle using a computer-implemented method, such as addition, subtraction, multiplication, division or a time dependent function. Newly received data can be combined with prior received data to indicate time-dependent changes. In this way, each spot contains a cumulative history of data starting at some initial time. In other embodiments, visual contrast can be enhanced between desired data and other data. In further embodiments, two or more different types of data can be plotted together to indicate relationships between variables. Real time monitoring of signals during therapeutic treatment using light, electricity or other nerve or muscle stimuli can allow a user to monitor physiological responses during stimulation and to make rapid decisions about medical treatment.
Owner:PHOTOMED TECH

Interfacing Media Manipulation with Non-Ablation Radiofrequency Energy System and Method

The effects produced by surgical devices that deploy an electrical circuit between electrodes are dependent on the nature of electrical work perform upon the conductive media in an around biologic tissues. Non-ablation radiofrequency surgical devices utilize a protective housing that provides, based upon procedure-specific needs, the ability to 1. move, manipulate, and segregate near-field effects both tangentially and perpendicularly to the tissue surface, 2. deliver far-field electromagnetic effects to tissue unencumbered by current deposition, and 3. serve as a 20 mechanical adjunct to and a selective throttling vent/plenum for energy delivery. Because the electrodes are non-tissue-contacting, this study characterizes the effects that non-ablation radiofrequency energy exerts upon interfacing media typically encountered during surgical applications. These devices create a Repetitive Molecular Energy Conversion Loop for surgical work; and, non-ionizing electromagnetic forces are deployed in strength levels that can produce thermal and non-thermal biologic tissue effects. A differential between current density dispersion and electromagnetic field strength is exploited to allow normal tissue healing responses to the near-field effects of tissue modification and preconditioning while permitting far-field effects, which are useful for inducing therapeutic biologic responses, to manifest in treated tissues that have been protected from electrical current generated collateral damage.
Owner:NUORTHO SURGICAL

System, apparatus, and method for user tunable and selectable searching of a database using a weighted quantized feature vector

A data processing means for user tunable and selectable (FIG. 2) of a database wherein the data contained therein have associated descriptive properties (FIG. 2) capable of being expressed in numeric form is described. Descriptive property values (FIG. 2) may be standardized numerically to eliminate property value overweighting. A quantized vector (FIG. 2) representative of the descriptive properties is created for each item in the database. This quantized vector becomes the fingerprint for each data item. The user submits a query item to be matched against the database for similarity. A fingerprint is calculated for the query item. The user may then assign weights to the individual descriptive properties based upon perceived importance (FIG. 2). A newly weighted fingerprint for the query item is then compared with the fingerprints for all the data in the database. A list of results is presented to the user (FIG. 2). The user may then change the previously assigned weights and then re-run the similarity search. This may be done as often as necessary to achieve the desired results. Similarity searching in a generic database is described. However, particulary the method is desirable in databases containing chemical compound structure data or biological response screening result data.
Owner:ROW2 TECH INC

Methods for using co-regulated genesets to enhance detection and classification of gene expression patterns

The present invention provides methods for enhanced detection of biological response patterns. In one embodiment of the invention, genes are grouped into basis genesets according to the co-regulation of their expression. Expression of individual genes within a geneset is indicated with a single gene expression value for the geneset by a projection process. The expression values of genesets, rather than the expression of individual genes, are then used as the basis for comparison and detection of biological response with greatly enhanced sensitivity. In another embodiment of the invention, biological responses are grouped according to the similarity of their biological profile.
The methods of the invention have many useful applications, particularly in the fields of drug development and discovery. For example, the methods of the invention may be used to compare biological responses with greatly enhanced sensitivity. The biological responses that may be compared according to these methods include responses to single perturbations, such as a biological response to a mutation or temperature change, as well as graded perturbations such as titration with a particular drug. The methods are also useful to identify cellular constituents, particularly genes, associated with a particular type of biological response. Further, the methods may also be used to identify perturbations, such as novel drugs or mutations, which effect one or more particular genesets. The methods may still further be used to remove experimental artifacts in biological response data.
Owner:MICROSOFT TECH LICENSING LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products