Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Low power dehumidifier

a dehumidifier and low-power technology, applied in the field of dehumidifiers, can solve the problems of adding power consumption, high power consumption of conventional desiccant wheel dehumidifiers, etc., and achieve the effect of reducing power consumption and efficient recycling of waste high hea

Inactive Publication Date: 2010-06-03
IND TECH RES INST
View PDF3 Cites 50 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0008]In view of the drawbacks of the prior art, it is the primary objective of the present invention to provide a low power dehumidifier to reduce power consumption.
[0017]Unlike the prior art that taught heating up recycled air to a required temperature by an electric heater directly, the present invention discloses a heat transfer element having a cooling end and a heating end configured for high-temperature condensation and high-temperature heating, respectively, so as to efficiently recycle waste high heat generated by the dehumidifier and thereby reduce power consumption.

Problems solved by technology

Efficiency of dehumidifying, which correlates closely with air temperature and surface temperature of the tray or tube of the evaporator, deteriorates in winter and in the nighttime when temperature is low and therefore adds to power consumption.
Hence, conventional desiccant wheel dehumidifiers are highly power-consuming electric appliances.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Low power dehumidifier
  • Low power dehumidifier
  • Low power dehumidifier

Examples

Experimental program
Comparison scheme
Effect test

first preferred embodiment

[0027]FIG. 2 is a schematic view of a first preferred embodiment of a low power dehumidifier of the present invention. For the sake of conciseness, heat transfer elements of the present invention are exemplified by at least a thermoelectric cooler (TEC) as shown in FIG. 2, but the present invention is not limited thereto. As shown in FIG. 2, a low power dehumidifier of the present invention comprises: a body 200, a desiccant wheel 20, thermoelectric coolers 22, 24 (that is, heat transfer elements), and an electric heater 23. The thermoelectric coolers 22, 24 have cooling ends 221, 241 and heating ends 222, 242, respectively. Specifically speaking, the thermoelectric coolers 22, 24 each comprise p-type and n-type semiconductor elements and a conventional conductor interposed therebetween so as to form a complete circuit. Heat exchange takes place between the cooling ends 221, 241 and the heating ends 222, 242 due to current-induced temperature difference (Peltier Effect) or temperatu...

second preferred embodiment

[0030]Referring to FIG. 3, a schematic view of a second preferred embodiment of the low power dehumidifier of the present invention is shown. The second preferred embodiment differs from the first preferred embodiment in that, in the second preferred embodiment, the low power dehumidifier further comprises a heat exchanger 21. As shown in the drawing, after passing through the heat exchanger 21, humid ambient air is delivered to the dehumidifying region 20A of the desiccant wheel 20. Also, as shown in the drawing, after being treated by the thermoelectric cooler 22, the humid hot air B2′ is introduced into the heat exchanger 21 via the condensing regions B3′, B4′ of the second channel so as for the humid hot air B2′ to be cooled down by the heat exchanger 21 and the water vapor in the humid hot air B2′ to be condensed. Then, condensed water is delivered to a container (not shown) at the bottom of the body 200 of the dehumidifier via B3′ and B4′ of the second channel, wherein the con...

third preferred embodiment

[0032]Referring to FIG. 4, a schematic view of a third preferred embodiment of the low power dehumidifier of the present invention is shown. As shown in the drawing, the third preferred embodiment differs from the first preferred embodiment in that, in the third preferred embodiment, a heat transfer element is provided in the form of a refrigeration cycle system instead of the thermoelectric coolers 22, 24. As shown in the drawing, the refrigeration cycle system comprises a compressor 260, a first condenser 261, a second condenser 262, an expansion valve 264, and an evaporator 266, and receives a working fluid L, such as a coolant, passing through the refrigeration cycle system. The body 300 is internally provided with a first channel (marked with arrows indicated by A1′ through A3′) for taking in humid ambient air A1′ and a second channel (marked with arrows indicated by B1′ through B6′) composed of heating regions B1′, B2′, B5′, B6′ and condensing regions B3′, B4′. A heat exchange...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A low power dehumidifier includes a body, a desiccation element, and heat transfer elements. The desiccation element has a dehumidifying region and a recycling region. Each of the heat transfer elements has a cooling end and a heating end configured for high-temperature condensation and high-temperature heating, respectively, thereby effectively recycling waste high heat generated by the dehumidifier and reducing power consumption.

Description

BACKGROUND OF THE INVENTION[0001]1. Field of the Invention[0002]The present invention relates to dehumidifiers, and more particularly, to a low power desiccant wheel dehumidifier.[0003]2. Description of the Prior Art[0004]A conventional dehumidifier works by using a compressor in compressing a coolant, and entails introducing air into an evaporator inside the dehumidifier by means of a fan, and condensing moisture in the air into droplets adhering to a tray or a tube of the evaporator due to low temperature (of 5° C. approximately) of the evaporator; and the phenomenon is known as low-temperature dehumidifying. Efficiency of dehumidifying, which correlates closely with air temperature and surface temperature of the tray or tube of the evaporator, deteriorates in winter and in the nighttime when temperature is low and therefore adds to power consumption.[0005]A conventional desiccant wheel dehumidifier works quickly, easily and efficiently and therefore is effective in overcoming the...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): F25B21/02F24F3/14F25B1/00
CPCF24F3/1423F24F5/0042F24F2203/1084F24F2203/1056F24F2203/1068F24F2203/1032
Inventor WU, HSI-SHENGCHIANG, HSU-CHENG
Owner IND TECH RES INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products