Aminosilane compounds, catalyst components and catalysts for olefin polymerization, and process for production of olefin polymers with the same

a technology of olefin polymerization and aminosilane, which is applied in the direction of catalyst activation/preparation, chemical/physical processes, group 4/14 element organic compounds, etc., can solve the problem that the compound has not been known as useful, and achieve high melt flow rate, high stereoregularity and yield of the polymer, and reduce the amount of hydrogen used

Inactive Publication Date: 2010-07-29
TOHO TITANIUM CO LTD
View PDF2 Cites 22 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0016]The novel aminosilane compound and the specific aminosilane compound of the present invention, when used as a catalyst component for olefin polymerization, can maintain a higher stereoregularity and yield of the polymer than commonly used catalysts, and can produce a polymer having a high melt flow rate with a small amount of added hydrogen (hereinafter referred to as “hydrogen response”). Therefore, owing to the capability of reducing the amount of hydrogen used for the polymerization and high catalyst activity, the catalyst is expected not only to produce polyolefins for common use at a low cost, but also to be useful in the manufacture of olefin polymers having high functions.

Problems solved by technology

As a result, the inventors have discovered a novel alkylaminosilane compound which has a secondary amino group, but has no Si—OR bond and found that this compound has not been known as a useful catalyst component for olefin polymerization (although many organosilicon compounds having two or more Si—OR bonds have been known as industrial catalyst components for olefin polymerization, no such alkyl aminosilane compounds have been known), and that a catalyst formed from a solid catalyst component comprising magnesium, titanium, a halogen, and an electron donor compound, an organoaluminum compound, and the novel alkylaminosilane compound having a specific structure is more suitable than commonly known catalysts as a catalyst for olefin polymerization.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Aminosilane compounds, catalyst components and catalysts for olefin polymerization, and process for production of olefin polymers with the same
  • Aminosilane compounds, catalyst components and catalysts for olefin polymerization, and process for production of olefin polymers with the same

Examples

Experimental program
Comparison scheme
Effect test

example 1

Synthesis of Aminosilane Compound

[0065]A flask in which the internal atmosphere was sufficiently replaced with nitrogen gas was charged with a THF solution of ethylamine in a nitrogen stream. The solution was cooled to −10 to 0° C. and a hexane solution of commercially available butyl lithium, in an amount equimolar to ethylamine, was slowly added using a dripping funnel while stirring. After the addition, the temperature was gradually increased to 50° C. and the mixture was reacted for two hours to obtain a slurry of lithium salt of ethylamine. Another flask in which the internal atmosphere was sufficiently replaced with nitrogen gas was charged with a toluene solution of dicyclopentyldimethoxysilane (a commercially available product) which was cooled to −10 to 0° C., and the above slurry of lithium salt of ethylamine, in an amount 2.1 times mol of the dicyclopentyldimethoxysilane, was slowly added using an injector in a nitrogen stream. After the addition, the temperature was grad...

example 2

Synthesis of Aminosilane Compound

[0067]A three-necked flask in which the internal atmosphere was sufficiently replaced with nitrogen gas was charged with 60 ml of a THF solution containing 0.04 mol of ethylamine in a nitrogen stream. 30 ml of a hexane solution containing 0.04 mol of BuLi was slowly added to the ethylamine solution cooled to −10° C. using a dripping funnel. After the addition, the mixture was gradually heated and reacted at 50° C. for two hours. Another container of which the internal atmosphere was purged with nitrogen was charged with 60 ml of a toluene solution containing 0.02 mol of t-butylethyldimethoxysilane and cooled to −10° C. The above slurry of Li salt of methylamine was slowly added dropwise to the cooled solution under nitrogen seal. After the addition, the mixture was reacted at 50° C. for three hours. The reaction mixture was separated into a solid and a solution by centrifugation. The solid was washed with 20 ml of toluene and added to the solution. T...

example 3

Synthesis of Aminosilane Compound

[0068]A flask in which the internal atmosphere was sufficiently replaced with nitrogen gas was charged with a THF solution of ethylamine. The solution was cooled to −10 to 0° C. and a hexane solution of commercially available butyl lithium, in an amount equimolar to ethylamine, was slowly added using a dripping funnel while stirring. After the addition, the temperature was gradually increased to 50° C. and the mixture was reacted for two hours to obtain a slurry of lithium salt of ethylamine. Another flask in which the internal atmosphere was sufficiently replaced with highly pure nitrogen gas was charged with a toluene solution of bis(methoxy)diisopropylsilane (a commercially available product) which was cooled to −10 to 0° C., and the above slurry of lithium salt of ethylamine, in an amount 2.1 times mol of the bis(methoxy)diisopropylsilane, was slowly added using an injector in a nitrogen stream. After the addition, the temperature was gradually i...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
durabilityaaaaaaaaaa
fluidityaaaaaaaaaa
melt flow rateaaaaaaaaaa
Login to view more

Abstract

A catalyst for polymerization of olefins formed from (A) a solid catalyst component containing magnesium, titanium, halogen, and an electron donor compound, (B) an organoaluminum compound shown by the formula, R6pAlQ3-p, and (C) an aminosilane compound shown by the formula, R3nSi(NR4R5)4-n; and a process for producing a catalyst for polymerization of olefins in the presence of the catalyst are provided. A novel aminosilane compound, a catalyst component for polymerization of olefins having a high catalytic activity, capable of producing polymers with high stereoregularity in a high yield, and exhibiting an excellent hydrogen response, a catalyst, and a process for producing olefin polymers using the catalyst are provided.

Description

TECHNICAL FIELD[0001]The present invention proposes a novel aminosilane compound, particularly a novel organosilicon compound which does not include an Si—OR bond which was indispensable as an olefin polymerization catalyst component used in general technologies, a catalyst component and a catalyst for polymerization of olefins in which the aminosilane compound is used, and a process for producing olefin polymers using the catalyst component and the catalyst.BACKGROUND ART[0002]A solid catalyst component containing magnesium, titanium, an electron donor compound, and a halogen as essential components used for polymerization of olefins such as propylene has been known in the art. A large number of methods for polymerizing or copolymerizing olefins in the presence of a catalyst for olefin polymerization comprising the above solid catalyst component, an organoaluminum compound, and an organosilicon compound have been proposed. For example, Patent Document 1 (JP-A-57-63310) and Patent D...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): C08F2/00C07F7/10C08F4/602
CPCC07F7/10C08F10/00C08F110/06C08F4/6492C08F4/6495C08F4/65927C08F2500/18C08F2500/12C08F2500/04C08F4/6465C08F4/6548C08F4/6565
Inventor HOSAKA, MOTOKIYANO, TAKEFUMISATO, MAKIKIMURA, KOHEI
Owner TOHO TITANIUM CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products