Processes for Making Compounds Useful as Inhibitors of ATR Kinase

a technology of atr kinase and process, which is applied in the preparation of carbamic acid derivatives, organic chemistry, drug compositions, etc., can solve problems such as dna damage, and achieve the effects of improving yield, easy scaling up to larger quantities, and long shelf li

Active Publication Date: 2013-07-18
VERTEX PHARMA INC
View PDF1 Cites 56 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0034]The present invention has several advantages over previously known methods. First, the present process has fewer number of total synthetic steps compared with previously disclosed processes. Second, the present process has improved yields over previously disclosed processes. Third, the present process is effective for compounds wherein R3 is a wide range of groups, such as alkyl groups or a large, hindered moiety, such as a ring. Fourth,

Problems solved by technology

In addition, many cancer cells express activated oncogenes or lack key tumour suppressors, and this can

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Processes for Making Compounds Useful as Inhibitors of ATR Kinase
  • Processes for Making Compounds Useful as Inhibitors of ATR Kinase
  • Processes for Making Compounds Useful as Inhibitors of ATR Kinase

Examples

Experimental program
Comparison scheme
Effect test

example 1

Synthesis of 2-(4-(5-amino-6-(3-(4-((tetrahydro-2H-pyran-4-ylamino)methyl)phenyl)isoxazol-5-yl)pyrazin-2-yl)pyridin-2-yl)-2-methylpropanenitrile

[0237]

Method 1:

[0238]To a solution of tetrahydropyran-4-amine (100 g, 988.7 mmol) in MeOH (3.922 L) was added 4-(diethoxymethyl)benzaldehyde (196.1 g, 941.6 mmol) over 2 min at RT. The reaction mixture was stirred at RT for 80 min, until the aldimine formation was complete (as seen by NMR). NaBH4 (44.49 g, 1.176 mol) was carefully added over 45 min, maintaining the temperature between 24° C. and 27° C. by mean of an ice bath. After 75 min at RT, the reaction has gone to completion. The reaction mixture was quenched with 1M NaOH (1 L). The reaction mixture was partitioned between brine (2.5 L) and TBDME (4 L then 2×1 L). The organic phase was washed with brine (500 mL) and concentrated in vacuo. The crude mixture was redissolved in DCM (2 L). The aqueous phase was separated, the organic phase was dried over MgSO4, filtered and concentrated in...

example 2

Synthesis of 3-[3-[4-[dideuterio(methylamino)methyl]phenyl]isoxazol-5-yl]-5-(4-isopropylsulfonylphenyl)pyrazin-2-amine (Compound II-1)

[0252]

Step 1: 5-Bromo-3-((trimethylsilyl)ethynyl)pyrazin-2-amine

[0253]

[0254](Trimethylsilyl)acetylene (1.845 g, 2.655 mL, 18.78 mmol) was added dropwise to a solution of 3,5-dibromopyrazin-2-amine (compound i) (5 g, 19.77 mmol) in DMF (25 mL). Triethylamine (10.00 g, 13.77 mL, 98.85 mmol), copper(I) iodide (451.7 mg, 2.372 mmol) and Pd(PPh3)4 (1.142 g, 0.9885 mmol) were then added and the resulting solution stirred at RT for 30 minutes. The reaction mixture was diluted with EtOAc and water and the layers separated. The aqueous layer was extracted further with EtOAc and the combined organic layers washed with water, dried (MgSO4) and concentrated in vacuo. The residue was purified by column chromatography eluting with 15% EtOAc / Petroleum ether to give the product as a yellow solid (3.99 g, 75% Yield). 1H NMR (400.0 MHz, DMSO) δ 0.30 (9H, s), 8.06 (IH, ...

example 3

Synthesis of 3-[3-[4-[dideuterio-(trideuteriomethylamino)methyl]phenyl]isoxazol-5-yl]-5-(4-isopropylsulfonylphenyl)pyrazin-2-amine (Compound II-2)

[0275]

Step 1: tert-Butyl N-[dideuterio-[4-(dimethoxymethyl)phenyl]methyl]-I-(trideuteriomethyl)carbamate

[0276]

[0277]LiHMDS (1M in THF) (1.181 mL of 1 M, 1.181 mmol) was added dropwise to a stirred solution of tert-butyl N-[dideuterio-[4-(dimethoxymethyl)phenyl]methyl]carbamate (300 mg, 1.059 mmol) in THF (5 mL) at −78° C. The solution was stirred at this temperature for 30 minutes then trideuterio(iodo)methane (198.0 mg, 84.98 L, 1.366 mmol) was added dropwise and the mixture allowed to warm to ambient temperature over 21 hours. The reaction was again cooled to −78° C. and a further portion of LiHMDS (1M in THF) (635.4 μL of 1 M, 0.6354 mmol) was added. After 15 minutes more trideuterio(iodo)methane (76.75 mg, 32.94 μL, 0.5295 mmol) was added and the reaction allowed to warm to ambient temperature over 5 hours. The mixture was diluted with...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The present invention relates to processes and intermediates for preparing compounds useful as inhibitors of ATR kinase, such as aminopyrazine-isoxazole derivatives and related molecules. The present invention also relates to compounds useful as inhibitors of ATR protein kinase. The invention relates to pharmaceutically acceptable compositions comprising the compounds of this invention; methods of treating of various diseases, disorders, and conditions using the compounds of this invention; processes for preparing the compounds of this invention; intermediates for the preparation of the compounds of this invention; and solid forms of the compounds of this invention.
The compounds of this invention have formula I or II:
wherein the variables are as defined herein.

Description

CROSS REFERENCE TO RELATED APPLICATIONS[0001]The present application claims the benefit under 35 U.S.C. §119(e) of U.S. provisional application No. 61 / 541,865, filed on Sep. 30, 2011, the contents of which are incorporated by reference.BACKGROUND OF THE INVENTION[0002]ATR (“ATM and Rad3 related”) kinase is a protein kinase involved in cellular responses to DNA damage. ATR kinase acts with ATM (“ataxia telangiectasia mutated”) kinase and many other proteins to regulate a cell's response to DNA damage, commonly referred to as the DNA Damage Response (“DDR”). The DDR stimulates DNA repair, promotes survival and stalls cell cycle progression by activating cell cycle checkpoints, which provide time for repair. Without the DDR, cells are much more sensitive to DNA damage and readily die from DNA lesions induced by endogenous cellular processes such as DNA replication or exogenous DNA damaging agents commonly used in cancer therapy.[0003]Healthy cells can rely on a host of different protei...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): C07D413/04C07D413/14C07D241/20C07C251/48
CPCC07C251/48C07D413/14C07D241/20C07D413/04C07B59/00C07C269/06C07D309/14C07B2200/05C07C271/20Y02P20/55A61K31/497A61P35/00
Inventor CHARRIER, JEAN-DAMIENSTUDLEY, JOHNPIERARD, FRANCOISE YVONNE THEODORA MARIEDURRANT, STEVEN JOHNLITTLER, BENJAMIN JOSEPHHUGHES, ROBERT MICHAELSIESEL, DAVID ANDREWANGELL, PAULURBINA, ARMANDOSHI, YI
Owner VERTEX PHARMA INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products