Methods of modulating stomata conductance and plant expression constructs for executing same

a technology of which is applied in the field of modulating stomata conductance and plant expression constructs for executing same, can solve the problems of crop loss and serious water scarcity, and achieve the effects of increasing water use efficiency of plants, decreasing plant stomata conductance, and increasing plant stomata conductan

Inactive Publication Date: 2014-11-20
YISSUM RES DEV CO OF THE HEBREWUNIVERSITY OF JERUSALEM LTD +1
View PDF3 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0020]According to an aspect of some embodiments of the present invention there is provided a method of decreasing plant stomata conductance, the method comprising introducing into a cell of a plant the nucleic acid construct, thereby decreasing the stomata conductance of the plant.
[0021]According to an aspect of some embodiments of the present invention there is provided a method of increasing water use efficiency of a plant, the method comprising introducing into a cell of the plant the nucleic acid construct, thereby increasing water use efficiency of the plant.
[0022]According to an aspect of some embodiments of the present invention there is provided a method of increasing tolerance of a plant to drought, salinity or temperature stress, the method comprising introducing into a cell of the plant the nucleic acid construct, thereby increasing tolerance of the plant to drought, salinity or temperature stress.
[0023]According to an aspect of some embodiments of the present invention there is provided a method of increasing biomass, vigor or yield of a plant, the method comprising introducing into a cell of the plant the nucleic acid construct, thereby increasing the biomass, vigor or yield of the plant.
[0024]According to an aspect of some embodiments of the present invention there is provided a method of increasing tolerance of a plant to biotic stress, the method comprising introducing into a cell of the plant the nucleic acid construct, thereby increasing tolerance of the plant to biotic stress.

Problems solved by technology

Water scarcity is a serious problem that will be exacerbated by global climate change.
Abiotic stresses, especially drought and increased salinity, are primary causes of crop loss worldwide.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Methods of modulating stomata conductance and plant expression constructs for executing same
  • Methods of modulating stomata conductance and plant expression constructs for executing same
  • Methods of modulating stomata conductance and plant expression constructs for executing same

Examples

Experimental program
Comparison scheme
Effect test

example 1

Materials and Methods

[0207]Plant Material and Growth Conditions

[0208]Experiments were conducted using WT tomato (Solanum lycopersicum cv. MP-1), isogenic independent transgenic homozygous tomato lines expressing different levels of the Arabidopsis AtHXK1 (35S::AtHXK1) [as previously described by Dai et al. (1999)], isogenic transgenic homozygous lines with antisense suppression of the tomato LeHXK1, 2&3 genes, isogenic transgenic homozygous lines expressing GFP or AtHXK1 under the control of the KST1 promoter, and the ABA-deficient mutant Sitiens (Dai et al., 1999) (S. lycopersicum cv. Ailsa Craig).

[0209]Independent antisense-HXK tomato lines, αHK1 and αHK2, were generated following transformation of MP-1 with an antisense construct of StHXK1 (X94302) expressed under the 35S promoter. The potato StHXK1 shares over 80% sequence identity with LeHXK1, 2&3 and conferred suppression of LeHXK1, 2&3 (FIG. 4A). Arabidopsis (Col.) and tomato (MP-1) lines that express GFP or AtHXK1 specifical...

example 2

Sucrose Stimulates Stomatal Closure

[0235]To examine the effect of Suc on stomata, intact wild-type (WT) tomato leaflets were immersed in artificial apoplastic solutions (Wilkinson and Davies, 1997) containing either 100 mM Suc or 100 mM sorbitol, a non-metabolic sugar used as an osmotic control, and measured stomatal aperture. Suc decreased stomatal aperture size by 29% relative to sorbitol (FIGS. 1A, B). Sucrose is a disaccharide that has to be cleaved. It may be cleaved by cell wall (apoplastic) invertases, yielding glucose (Glc) and fructose (Fru) in equal proportions (Granot, 2007) and resulting in additional extracellular osmolarities approaching 200 mOsm / L, as compared to the 100 mOsm / L of the original Suc added. We, therefore, compared the effects of 100 mM sucrose, 100 mM Glc+100 mM Fru and 200 mM Glc or Fru with the effect of 200 mM mannitol, which was used as an additional osmotic control. All of the sugar combinations decreased the size of stomatal apertures, as compared ...

example 3

Sucrose Stimulates Stomatal Closure Via Hexokinase

[0236]Sucrose may be cleaved by either apoplastic (extracellular) invertase or enter the cells via sucrose transporters and then be cleaved by intracellular sucrose-cleaving enzymes to yield the hexoses Glc and Fru. The hexoses Glc and Fru must be phosphorylated by hexose-phosphorylating enzymes (Granot, 2007). In plants, hexokinases (HXK) are the only enzymes that can phosphorylate Glc and may also phosphorylate Fru (Granot, 2007, 2008). HXKs are intracellular enzymes known to play both kinetic and sugar-signaling roles (Rolland et al., 2006). To examine whether Suc stimulates stomatal closure via HXK, the effect of Suc was tested in the presence of N-acetyl glucosamine (NAG), an efficient inhibitor of HXK activity (Hofmann and Roitsch, 2000). NAG almost completely abolished the effect of Suc and prevented stomatal closure, supporting a role for HXK in the regulation of stomatal closure (FIG. 1B).

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
timeaaaaaaaaaa
humidityaaaaaaaaaa
temperaturesaaaaaaaaaa
Login to view more

Abstract

Plant expression construct are provided. According to an embodiment, the plant expression construct comprises a nucleic acid sequence encoding a hexokinase under a transcriptional control of a guard cell-specific cis-acting regulatory element. Also provided are methods of using the constructs and transgenic plants, plant cells and plant parts expressing same.

Description

[0001]This application claims the benefit of priority under 35 USC 119(e) of U.S. Provisional Patent Application No. 61 / 569,251 filed Dec. 11, 2011, the contents of which are incorporated herein by reference in their entirety.FIELD AND BACKGROUND OF THE INVENTION[0002]The present invention, in some embodiments thereof, relates to methods of modulating stomata conductance and plant expression constructs for executing same.[0003]Stomata are dynamic pores in the impermeable protective cuticle that coats the aerial parts of land plants, which evolved primarily to save water. Stomata, which are comprised of two guard cells and the pore they circumscribe, open at dawn to allow the entry of atmospheric carbon dioxide (CO2) for photosynthesis, at the cost of extensive transpirational water loss. The stomata close when carbon fixation and utilization are less efficient, in order to reduce the loss of water via transpiration (Assmann, 1993). At the mechanistic level, stomata open in response ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): C12N15/82
CPCC12N15/8273C12N15/8279C12N15/8261C12N15/8241C12N15/8218Y02A40/146A01H5/02A01H5/10A01H5/12C12N15/113C12N15/82
Inventor GRANOT, DAVIDKELLY, GILORMOSHELION, MENACHEM
Owner YISSUM RES DEV CO OF THE HEBREWUNIVERSITY OF JERUSALEM LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products