Cementitious composition incorporating high levels of glass aggregate for producing solid surfaces

a technology of cementitious composition and solid surface, which is applied in the direction of solid waste management, sustainable waste treatment, climate sustainability, etc., can solve the problems of low mechanical and chemical properties of solid surface panels, high manufacturing cost, and inability to provide a practical sheet form material having solid surface with the desirable properties described above, etc., to achieve low hydraulic permeability, high compressive and tensile strength, and low mechanical properties.

Active Publication Date: 2010-08-10
POLYCOR STONE CORP +5
View PDF23 Cites 30 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0017]The present invention is directed to a cementitious composition for high density, low porosity sheet-form building materials that can be used to provide exposed solid surfaces, for example, surfaces for shower walls and floors, counter-tops, table-tops, and the like, where low hydraulic permeability and high compressive and tensile strength is desired. The invention also is directed at a method of producing such sheet-form products

Problems solved by technology

However, the difficulty with substituting glass for sand or aggregate in this application is that glass normally results in the loss or degradation of the mechanical and chemical properties needed for solid surface panels.
Cementitious and non-cementitious compositions having a glass or recycled component are known, but none are capable of providin

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Cementitious composition incorporating high levels of glass aggregate for producing solid surfaces
  • Cementitious composition incorporating high levels of glass aggregate for producing solid surfaces
  • Cementitious composition incorporating high levels of glass aggregate for producing solid surfaces

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0048]A 3000 g batch was prepared by pre-mixing for 15 minutes 300.0 g type I white Portland cement, 60.0 g metakaolin, 80.0 g NYAD-G wollastonite, 80.0 g grey silica fume, 80.0 g Minusil-5 silica flour, and 375.0 g 100 mesh plate glass pozzolan. To 154.5 g of H2O was added 7.5 g 5% aqueous solution of CH3COOH, 15.0 g Acryly-60 acrylic modifier, and 33.62 g ADVA-100 high-range water-reducer. The two were combined to form a dough. To this dough 375.0 g 12 mesh glass sand was added. After mixing, 6.2 g Polarset set accelerator was added. After thoroughly mixing, 1,650.0 g of ⅝″ minus cobalt blue crushed Skyy vodka bottles was added and thoroughly mixed. The mixture was placed into molds and vibrated for 5 minutes. The mix was highly thixotropic, with bubbles rising easily from the mix during vibration. The molds were left to air cure for 24 hours after which they were moist cured for 6 days for the 7-day compressive strength measurement, moist cured for 27 days for the 28-day compress...

example 2

[0056]A 740 lb batch was prepared by pre-mixing for 15 minutes 94 lbs type I white Portland cement, 13 lbs metakaolin, 13 lbs NYAD-G wollastonite, 13 lbs metakaolin, 13 lbs fly ash, 23 lbs 120 mesh plate glass, 30 lbs 100 mesh plate glass, and 94 lbs 12 mesh plate glass. This was added to a solution consisting of 46 lbs of H2O, 7.5 lbs of Acryl-60, 6.6 lbs of Adva-100. After 15 minutes of mixing 448 lbs, of 5′8″ minus recycled glass aggregate was added and mixed to a uniform consistency. 19 lbs of Cembinder-8 was slowly added and the mixing continued for 10 minutes. The mixture was placed into a 9′×5′×3 cm pan mold and vibrated for 15 minutes. The mix was highly thixotropic, with bubbles rising easily from the mix during vibration. Test samples measuring 2″ diameter by 6″ length, and 2″×2″×8″ were also made. The molds were left to air cure for 24 hours after which they were mist cured for 3 days and steamed cured for 15 hours. The panels were ground and polished on one face to 3500 ...

example 3

[0057]A 740 lb batch was prepared by pre-mixing for 15 minutes 94 lbs type I white Portland cement, 15 lbs metakaolin, 15 lbs NYAD-G wollastonite, 15 lbs metakaolin, 15 lbs fly ash, 37 lbs 300 mesh plate glass, 22 lbs 120 mesh plate glass, 15 lbs 100 mesh plate glass, and 111 lbs 12 mesh plate glass. This was added to a solution consisting of 25.0 lbs of H2O, 22.2 lbs of Acryl-60, 6.9 lbs of Adva-100 and 3.7 lbs Orisil-200. After 15 minutes of mixing 410 lbs, of 5′8″ minus recycled glass aggregate was added and mixed to a uniform consistency. The mixture was placed into a 9′×5′×3 cm pan mold and vibrated for 15 minutes. The mix was highly thixotropic, with bubbles rising easily from the mix during vibration. Test samples measuring 2″ diameter by 6″ length, and 2″×2″×8″ were also made. The molds were left to air cure for 24 hours after which they were mist cured for 3 days and steamed cured for 15 hours. The panels were ground and polished on one face to 3500 grit finish exposing the...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Login to view more

Abstract

A cementitious composition for high density, low porosity sheet-form building materials having solid surfaces is comprised of cement, pozzolans, and a high percentage of fine and/or coarse glass aggregate, preferably present in an amount which by weight is at least 60% of the composition. The cement content is relatively low, preferably in the range of about 3% to 20% by weight, and the pozzolan to cement ratio is relatively high, preferably equal to or greater than unity, but which can suitably be in the range from 0.25 to 4. The composition preferably uses recycled glass and preferably has a high recycle content. The sheet-form material made in accordance with the invention can be used to provide exposed solid surfaces, for example, surfaces for shower walls and floors, counter-tops, table-tops, and the like, where low hydraulic permeability and high compressive and tensile strength are desired.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS[0001]This application claims the benefit of provisional patent application No. 60 / 606,402, filed Aug. 31, 2004.BACKGROUND OF THE INVENTION[0002]The present invention generally relates to sheet-form building materials, and more particularly relates to cementitious sheet-form materials having an exposed solid surface that is often intended to satisfy desired aesthetic requirements. The invention is particularly adapted to producing cementitious sheet-form materials having a high recycled materials content, and especially a high content of recycled glass. However, the invention is not limited to the use of recycled materials.[0003]Cementitious sheet-form building materials or panels that provide solid surfaces have a wide variety of applications, such as use for counter-tops, table-tops, shower pans, floors, walls and the like. Such panels are conventionally fabricated with a high cement content using an aggregate, such as rock or crushed marble,...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): C04B14/22
CPCC04B14/22C04B28/02C04B28/04C04B20/0076C04B24/04C04B24/2641C04B40/0046C04B40/0067C04B40/0259C04B14/043C04B14/062C04B14/106C04B18/08C04B18/141C04B18/146C04B20/008C04B20/0096C04B40/0028C04B2103/0088C04B2103/302Y02W30/91
Inventor MCPHERSON, DONALD MARTIN
Owner POLYCOR STONE CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products