Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Stentless aortic valve replacement with high radial strength

a radial strength, aortic valve technology, applied in the field of stentless aortic valve replacement with high radial strength, can solve the problems of cardiac insufficiency, potentially fatal for patients, and operation becomes particularly difficult, and achieves the effects of high radial strength, improved quality of life, and minimal invasiveness

Inactive Publication Date: 2013-10-29
SPEYSIDE MEDICAL LLC
View PDF359 Cites 37 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0006]The present invention is based on the task of solving the problem configuring a device for replacement of an aortic or other valve on the human heart or peripheral vascular system by a minimally invasive technique. A device with a high radial strength may provide an ideal implant for heavily calcified aortic valves. Conventional treatment includes surgical replacement or a percutaneous balloon valvuloplasty. The second option is an insertion of a balloon catheter to the calcified aortic valve and inflation to dilation of the native valve to push the calcium aside. Though this technique is successful acutely, the restinosis rates are shown to be about 80% at twelve months. Some physicians in Europe believe this to be a technique to use in maintaining aortic flow in patients with out a surgical option. By this technique a patient may be treated with a balloon valvuloplasty up to three times providing an improved quality of life without a surgical intervention. It therefore stands to reason that during this acute restinosis after balloon valvuloplasty, if the calcium can be held back by a high radial strength device, a longer term therapy may be possible with a high strength device. This allows a larger patient population to be treated with a less invasive method and a more rapid recovery time. It may also eliminate the need for by-pass. This procedure may be completed under fluoroscopy, surface, transesophageal or transluminal echo. It will be desirable to monitor the patient's vital signs before, during and after the procedure. These may include blood pressures in relative chambers of the heart, aortic outflow, heart rate, breathing rates and blood chemistry. Blood thinners, heparin, aspirin and other drugs may be required to optimize blood before during and after the procedure.
[0024]Yet another embodiment of the present invention comprises a temporary heart valve catheter, for enabling minimally invasive procedures on a valve in a beating heart. The catheter includes an elongate, flexible catheter body, having a proximal end and a distal end, a valve on the distal end, the valve comprising an inflatable structure; and at least one link between the catheter and the valve to prevent detachment of the valve from the catheter.
[0025]Another embodiment of the present invention comprises a method of in situ formation of a prosthetic valve support. A prosthetic valve is attached to a flexible support component which is incapable of retaining the valve at a functional site in the arterial vasculature. The support component extends both proximally and distally of the base of the valve. The valve is positioned at the site. The flexible support component is supplemented to increase the rigidity of the support component sufficiently to retain the valve at the site.
[0033]In accordance with a another embodiment of the present invention, there is provided a temporary heart valve catheter, for enabling minimally invasive procedures on a valve in a beating heart. The catheter comprises an elongate flexible catheter body, having a proximal end and a distal end. A valve is carried by the distal end. At least one link is provided between the catheter and the valve to prevent detachment of the valve from the catheter. The valve may be supported by a support frame, which is connected to a pull wire or wires extending axially throughout the length of the catheter. Axial tensioning of the pull wire relative to the catheter body deploys the valve into its functional configuration. Proximal retraction of the pull wire causes the valve to reduce in cross section and draw into the distal end of the catheter, such as for placement or removal. The link may comprise a connection between the pull wire and a valve support.

Problems solved by technology

The malfunctioning of an aortic valve results in cardiac insufficiency and hence in a situation that is potentially fatal for the patient.
The operation becomes particularly difficult when there is strong calcareous degeneration on the natural valve because painstaking attention must be paid during removal in order to ensure that calcification particles will not enter the blood circulation and cause there thromboses at other sites in the body.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Stentless aortic valve replacement with high radial strength
  • Stentless aortic valve replacement with high radial strength
  • Stentless aortic valve replacement with high radial strength

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0043]The present invention provides a percutaneous valve replacement with high radial strength.

[0044]One current method for implanting a tissue valve percutaneously includes a balloon expandable or self-expanding stent with a tissue valve attached as described in Andersen U.S. Pat. No. 6,168,614. See FIG. 2. Another method to implant a tissue valve percutaneously is described in U.S. Pat. No. 5,554,185 (Block), the disclosure of which is incorporated in its entirety herein by reference. One key feature in any valve apparatus is the ability to withstand forces generated by the closure of the valve at the commissural supports. In surgical valves these are seen as posts or pillars rising from the base of the device. General construction often includes a metallic frame encompassed with silicone and wrapped with Dacron. This frame will withstand the cyclical loading seen under normal conditions of operation in a heart valve. Since surgical valves are installed under direct visualization...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

Disclosed is a stentless transluminally implantable heart valve, having a formed in place support. The formed in place support exhibits superior crush resistance when compared to conventional balloon expandable or self expandable stent based valves.

Description

PRIORITY INFORMATION[0001]This application claims priority under 35 U.S.C. §119 to U.S. Provisional Application Ser. No. 60 / 688,305, filed Jun. 7, 2005, the disclosure of which is incorporated in its entirety herein by reference.BACKGROUND OF THE INVENTION[0002]The malfunctioning of an aortic valve results in cardiac insufficiency and hence in a situation that is potentially fatal for the patient. For repair of such a defect, artificial aortic valves have been developed which are implanted as a substitute for the damaged valve in complex and risky open-heart surgery (sternotomy). The operation becomes particularly difficult when there is strong calcareous degeneration on the natural valve because painstaking attention must be paid during removal in order to ensure that calcification particles will not enter the blood circulation and cause there thromboses at other sites in the body. It is common to fasten the replacement valves—which are either mere engineering products or derived f...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Patents(United States)
IPC IPC(8): A61F2/24
CPCA61F2/2418A61F2/24A61F2/2469A61F2220/0066A61F2250/0003A61F2/2476A61F2/2409A61F2/2427A61F2/2415
Inventor LASHINSKI, RANDALL T.BISHOP, GORDON B.
Owner SPEYSIDE MEDICAL LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products