Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

31results about How to "Enhance or speed the refilling of the build region" patented technology

Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening

A method of forming a three-dimensional object is carried out by: (a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; (b) filling the build region with a polymerizable liquid, the polymerizable liquid including a mixture of (i) a light polymerizable liquid first component, and (ii) a second solidifiable component that is different from the first component; (c) irradiating the build region with light through the optically transparent member to form a solid polymer scaffold from the first component and also advancing the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object, and containing the second solidifiable component carried in the scaffold in unsolidified and / or uncured form; and (d) concurrently with or subsequent to the irradiating step, solidifying and / or curing the second solidifiable component in the three-dimensional intermediate to form the three-dimensional object.
Owner:CARBON INC

Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening

A method of forming a three-dimensional object of polyurethane, polyurea, or copolymer thereof is carried out by: (a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; (b) filling the build region with a polymerizable liquid, the polymerizable liquid including at least one of: (i) a blocked or reactive blocked prepolymer, (ii) a blocked or reactive blocked diisocyanate, or (iii) a blocked or reactive blocked diisocyanate chain extender; (c) irradiating the build region with light through the optically transparent member to form a solid blocked polymer scaffold and advancing the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object, with the intermediate containing the chain extender; and then (d) heating or microwave irradiating the three-dimensional intermediate sufficiently to form from the three-dimensional intermediate the three-dimensional object of polyurethane, polyurea, or copolymer thereof.
Owner:CARBON INC

Wash liquids for use in additive manufacturing with dual cure resins

A method of forming a three-dimensional object, which method includes a cleaning or washing step, is carried out by: (a) providing a carrier and a fill level, and optionally an optically transparent member having a build surface defining the fill level, the carrier and the fill level having a build region therebetween; (b) filling the build region with a polymerizable liquid, the polymerizable liquid comprising a mixture of (i) a light polymerizable liquid first component, and (ii) a second solidifiable component that is different from the first component; (c) irradiating the build region with light, to form a solid polymer scaffold from the first component and also advancing the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object and containing the second solidifiable component carried in the scaffold in unsolidified and / or uncured form; (d) washing the three-dimensional intermediate; and (e) concurrently with or subsequent to the irradiating step, and / or the washing step, solidifying and / or curing the second solidifiable component in the three-dimensional intermediate to form the three-dimensional object.
Owner:CARBON INC

Wash liquids for use in additive manufacturing with dual cure resins

A method of forming a three-dimensional object, which method includes a cleaning or washing step, is carried out by: (a) providing a carrier and a fill level, and optionally an optically transparent member having a build surface defining the fill level, the carrier and the fill level having a build region therebetween; (b) filling the build region with a polymerizable liquid, the polymerizable liquid comprising a mixture of (i) a light polymerizable liquid first component, and (ii) a second solidifiable component that is different from the first component; (c) irradiating the build region with light, to form a solid polymer scaffold from the first component and also advancing the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object and containing the second solidifiable component carried in the scaffold in unsolidified and / or uncured form; (d) washing the three-dimensional intermediate; and (e) concurrently with or subsequent to the irradiating step, and / or the washing step, solidifying and / or curing the second solidifiable component in the three-dimensional intermediate to form the three-dimensional object.
Owner:CARBON INC

Dual precursor resin systems for additive manufacturing with dual cure resins

A method of forming a dual cure three-dimensional object by additive manufacturing may be carried out by mixing a first precursor liquid and a second precursor liquid to produce a polymerizable liquid comprising a mixture of (i) a light polymerizable liquid first component, and (ii) a second solidifiable component (e.g., a second reactive component) that is different from the first component (e.g., that does not contain a cationic photoinitiator, or is further solidified by a different physical mechanism, or further reacted, polymerized or chain extended by a different chemical reaction). In the foregoing: (i′) at least one reactant of the second solidifiable component is contained in the first precursor liquid, and (ii′) at least one reactant or catalyst of the second solidifiable component is contained in the second precursor liquid. Once mixed, the three-dimensional object may be formed from the resin by a dual cure additive manufacturing process.
Owner:CARBON INC

Three-Dimensional Printing Using Carriers with Release Mechanisms

A method of forming a three-dimensional object (17) includes: providing a carrier (18) and an optically transparent member (15) having a build surface, the carrier (18) and the build surface defining a build region therebetween; filling the build region with a polymerizable liquid (16); irradiating the build region with light (12) through the optically transparent member (15) to form a solid polymer from the polymerizable liquid; and advancing the carrier (18) away from the build surface to form the three-dimensional object (17) from the solid polymer. The carrier (18) includes at least one retain and release (34) feature that is configured to: i) retain the three-dimensional object (17) formed from the solid polymer on the carrier (18) in a first state; and ii) facilitate release of the three-dimensional object (17) formed from the solid polymer from the carrier (18) in a second state.
Owner:CARBON INC

Method of additive manufacturing by intermittent exposure

A method of forming a three-dimensional object, is carried out by: providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; filling the build region with a polymerizable liquid, intermittently irradiating the build region with light through the optically transparent member to form a solid polymer from the polymerizable liquid, and continuously or intermittently advancing the carrier away from the build surface to form the three-dimensional object from the solid polymer. In some embodiments, the filling, irradiating, and / or advancing steps are carried out while also concurrently: (i) continuously maintaining a dead zone of polymerizable liquid in contact with the build surface, and (ii) continuously maintaining a gradient of polymerization zone between the dead zone and the solid polymer and in contact with each thereof, the gradient of polymerization zone comprising the polymerizable liquid in partially cured form.
Owner:CARBON INC

Dual cure additive manufacturing of rigid intermediates that generate semi-rigid, flexible, or elastic final products

Provided herein is a method of forming a three-dimensional object, comprising: (a) providing a carrier and a fill level having a build region therebetween; (b) filling said build region with a polymerizable liquid comprising a mixture of (i) a light polymerizable liquid first component, and (ii) a second solidifiable component; (c) irradiating said build region with light to form a solid polymer scaffold from said first component and also advancing said carrier away from said build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, said three-dimensional object and containing said second solidifiable component carried in said scaffold in unsolidified and / or uncured form; and (d) solidifying and / or curing said second solidifiable component in said three-dimensional intermediate. The solidifying and / or curing step (d) may increase the elasticity and / or decrease the rigidity of said intermediate in forming said three-dimensional object.
Owner:CARBON INC

Fabrication of three dimensional objects with variable slice thickness

A method of forming the body portion of a three-dimensional object from a polymerizable liquid by the process of continuous liquid interface printing is described. The process includes advancing a carrier for the object away from a build surface while irradiating a build region between the carrier and build surface in a pattern of advancing and irradiating defined by an operating mode, with the body portion having a plurality of contiguous segments and with the irradiating carried out in sequentially presented slices of exposure, each having a pattern that corresponds to a segment of the body portion. Each segment has a thickness (e.g., in Z or vertical dimension) during the forming thereof. In the present invention, slice thickness is changed among the slices at least once during the formation of the body portion.
Owner:CARBON INC

Fabrication of three dimensional objects with multiple operating modes

A method of forming the body portion of a three-dimensional object from a polymerizable liquid by the process of continuous liquid interface printing is described. The body portion has a plurality of contiguous segments, and the process includes advancing a carrier for the object away from a build surface while irradiating a build region between the carrier and build surface in a pattern of advancing and irradiating defined by an operating mode. In the present invention, the operating mode is changed at least once during the formation of the body portion for different contiguous segments of the body portion.
Owner:CARBON INC

Three-Dimensional Printing Using Tiled Light Engines

A method of forming a three-dimensional object includes: providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween, filling the build region with a polymerizable liquid, irradiating the build region with light through the optically transparent member to form a solid polymer from the polymerizable liquid, and advancing the carrier away from the build surface to form the three-dimensional object from the solid polymer. The irradiating step is carried out with a plurality of tiled images projected into the build region, and each tiled image includes an array of projected pixels. An apparatus to perform the method is also discloses.
Owner:CARBON INC

Continuous liquid interface production with sequential patterned exposure

A method of forming the body portion of a three-dimensional object (17) from a polymerizable liquid (16) is carried out by a process including advancing a carrier (18) for the object away from a build surface while irradiating a build region between the carrier and build surface in a pattern of advancing and irradiating defined by an operating mode. The body portion has a plurality of contiguous segments, with the irradiating carried out in sequentially presented slices of exposure. Each slice having a pattern that corresponds to a segment of said body portion. Each pattern includes regions of greater irradiation and regions of lesser irradiation (e.g., within the perimeter of each pattern). The method includes consecutively changing, for at least a portion of the forming of said three-dimensional object, the pattern between consecutive slices in a sequence of sequentially presented patterns of exposure that facilitates the flow of the polymerizable liquid to the build surface.
Owner:CARBON INC

Three-dimensional printing using carriers with release mechanisms

A method of forming a three-dimensional object (17) includes: providing a carrier (18) and an optically transparent member (15) having a build surface, the carrier (18) and the build surface defining a build region therebetween; filling the build region with a polymerizable liquid (16); irradiating the build region with light (12) through the optically transparent member (15) to form a solid polymer from the polymerizable liquid; and advancing the carrier (18) away from the build surface to form the three-dimensional object (17) from the solid polymer. The carrier (18) includes at least one retain and release (34) feature that is configured to: i) retain the three-dimensional object (17) formed from the solid polymer on the carrier (18) in a first state; and ii) facilitate release of the three-dimensional object (17) formed from the solid polymer from the carrier (18) in a second state.
Owner:CARBON INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products