Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Dual-drive coupled mode micro-fluidic chip device for detecting various subtype swine influenzas

A microfluidic chip and coupling mode technology, which is applied in the field of analysis and testing, can solve the problems of large flow resistance, troublesome operation of modifying the inner surface of PDMS microchannels, large flow resistance, etc., and achieve the effect of increased compatibility

Inactive Publication Date: 2016-11-23
NINGBO UNIV
View PDF4 Cites 1 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0007] But it's not that simple
[0008] First, this polydimethylsiloxane material, the material referred to by the acronym PDMS, is itself a strongly hydrophobic material. Microchannels are built on this material. If the microchannels are not targeted The modification operation of the surface of the channel, then, after the overall assembly is completed, that is, after the cover is covered, because the inner surface of the micro channel in the structure occupies most of the inner surface of the liquid flow channel, then the PDMS micro channel The strong hydrophobic characteristic of the inner surface of the channel is the decisive factor, which will make it very difficult for the polar liquid flow similar to the aqueous solution to pass through, and its flow resistance is so large that even ordinary micropumps are difficult to push. Of course, If the cover sheet also chooses to use the PDMS material, then the problem is basically the same, with little difference; therefore, in the prior art, it is necessary to modify and modify the inner surface of the microchannel on the PDMS material; then , is this modification operation for the inner surface of the PDMS microchannel very troublesome? That's not the problem. What constitutes a serious technical problem is another problem: the PDMS polymer molecules in the bulk phase of the PDMS material substrate have the characteristics of automatic diffusion and migration to the surface. The characteristics of polymer molecules diffusing and migrating to the surface automatically will make the modified state of the inner surface of the microchannel modified by the surface modification unable to maintain for a long enough time, and the microgroove after surface modification The maintenance time of the inner surface state of the channel is roughly only enough to complete the time required for the internal test experiment in the laboratory; in other words, the inner surface of the PDMS microchannel after surface modification or surface modification is formed after modification The surface state of the surface does not last long, but quickly tends to or changes back to the surface state before the surface modification, and returns to the original strongly hydrophobic surface state in a relatively short period of time. Then, just imagine, Can such microfluidic chips be produced in large quantities, stored in large quantities, and widely promoted? The answer is obvious, that is, impossible
[0016] Third, as mentioned above, the inner surface of the PDMS microchannel is strongly hydrophobic, and targeted surface chemical modification or surface chemical modification is difficult to last. It is effective to use it within a short period of time; if the relatively short expiration date has passed and it is still used forcibly, since the surface state is already close to the hydrophobic state, there must be a comparison between using the conventional micropump to drive the sample liquid flow. Large flow resistance, in this way, the sample liquid can only be forced to flow in the target direction by increasing the pumping power and pumping pressure of the micropump. Pumping pressure to pump the sample liquid flow will cause bubbling, puffing, twisting, and deformation of the microchannels at the sampling end of the substrate including the area near the sampling end, and, under such high pressure conditions, The microgroove and its periphery at the sample inlet and its vicinity are also prone to peeling between the substrate and the cover slip. In this case, the sample solution will enter between the substrate and the cover slip formed after the peeling. This actually leads to the damage of the microfluidic chip; of course, if the surface modification or the surface modification is not in place, it will also lead to the above-mentioned situation within the short customary validity period; In the case of simply using an external micropump for liquid flow drive, the above-mentioned problem always exists
As mentioned above, if no pre-operations such as surface modification or surface modification have been done at all, then the above-mentioned problem will be more serious, even if the microchannel bubbling at the injection end and its vicinity does not occur , puffing, twisting, deformation, and peeling between the substrate and the cover sheet, etc., just because the flow resistance is too large, the use of a high-pressure micropump may not be able to drive the sample liquid flow toward the terminal.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Dual-drive coupled mode micro-fluidic chip device for detecting various subtype swine influenzas

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0052] exist figure 1 In the shown embodiment of the present case, the structure of the device includes a multi-channel microfluidic chip, and the structure of the microfluidic chip includes a substrate 1 and a cover sheet 2 that are attached to each other and installed together. The substrate 1 and the cover sheet 2 are plates or sheets, the surface of the substrate 1 facing the cover sheet 2 contains a channel structure formed by a molding process or an etching process, and the substrates that are attached to each other The sheet 1 and the cover sheet 2 jointly construct a microfluidic chip with a pipe structure, and the structural position of the pipe is located at the junction area where the substrate 1 and the cover sheet 2 are attached to each other. The two ends of the pipe are respectively connected to the The sampling port 5 of the microfluidic chip is connected to the terminal 6, the sampling port 5 is the injection port of the sample solution of the microfluidic chi...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Diameteraaaaaaaaaa
Lengthaaaaaaaaaa
Thicknessaaaaaaaaaa
Login to View More

Abstract

The invention relates to a dual-drive coupled mode micro-fluidic chip device for detecting various subtype swine influenzas, and belongs to the field of analysis testing. Low-cost and easily processed PDMS (polydimethylsiloxane) is used for manufacturing a substrate of a micro-fluidic chip for subtype swine influenza diagnosis, and a series of obstacles exist. The device is used for eliminating the obstacles. The scheme mainly includes that the PDMS with an original ecological surface is selected as the substrate, a miniature ultrasonic transducer is fixedly mounted near a sample liquid flow terminal of the micro-fluidic chip, interfacial tension is reduced by ultrasonic waves, ultrasonic intensity is rapidly decreased in a short distance by high ultrasonic wave absorption capacity of the PDMS, so that interfacial tension difference is formed between two ends of the chip and provides force for driving sample liquid flow to flow towards the terminal along a hydrophobic capillary channel, and the force and the mechanical pumping force of a micro-pump in the structure are in collaborative operation to eliminate the obstacles.

Description

technical field [0001] The invention relates to a dual-drive coupling mode microfluidic chip device for detecting multiple subtypes of swine flu, which belongs to the field of analysis and testing. Background technique [0002] For the technical background of multi-channel microfluidic subtype swine influenza diagnosis, please refer to CN 201110311127.1 and other invention patent applications. [0003] As far as the overall overview of microfluidic technology itself is concerned, you can refer to the monograph "Illustrated Microfluidic Chip Laboratory" published by the famous microfluidic expert Mr. Lin Bingcheng not long ago, which has been published by Science Press. The past, present, and future prospects of microfluidic technology, etc., have detailed and long-form discussions that go deep into specific details. [0004] So, let's talk about the key issues of this case. [0005] The basic structure of a microfluidic chip includes a substrate etched with tiny liquid flo...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): G01N27/416G01N33/543B01L3/00
Inventor 李榕生干宁吴大珍李天华缪养宝陈梦王叶冯小彬
Owner NINGBO UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products