Textile ink composition
a technology of composition and ink, applied in the field oftextile ink composition, can solve the problems of inability to durably dye the fabric, inability to scale up the reaction for commercial production, and general inability to lightfast or washfast dyes, etc., and achieve the effect of reducing surface tension
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
example 1
[0034] A series of textile inks was prepared by mixing a cationically charged metal oxide with a number of dyes. The cationically charged metal oxide that was used in the example was a 50 weight percent aqueous solution of aluminum chlorohydrol obtained from Reheis. The dyes used in the example were Carminic Acid, Alizarin Red S, Acid Blue 45, Acid Green 41, Mordant Yellow 12, Hematoxylin, Mordant Blue 9, Chromoxane Cyanine R, Calcon Carboxylic Acid, Plasmocorinth B, Pyrocatechol, Acid Alizarin Violet N and Alizarin Yellow GG, obtained from Aldrich Chemical Corporation.
[0035] The textile ink compositions were formed by adding 25 microliters of the aluminum chlorohydrol solution to 1 ml of a 20 mM solution of each dye at room temperature, and the mixture was stirred vigorously for 30 minutes.
[0036] Each textile ink composition was then spotted onto separate cotton and polyester textile fabrics by applying a 10-20 microliter drop of the ink composition onto the fabric surface. The p...
example 2
[0039] Textile ink compositions were prepared as described in example 1 and were spotted onto cotton and polyester fabrics. The fabrics were then washed in a domestic washing machine on the harshest washing cycle, using the recommended dosage of a domestic laundry detergent (TIDE® from Procter & Gamble, USA) and hot water (about 90 degrees Celsius) for up to 30 minutes. The color intensities and washfast values were calculated as described above, and the results that were obtained were similar to those in example 1. A skilled person will understand that this is a fairly harsh washfast test for any printed ink, and the results of this test are thus a good indication that the ink compositions are able to durably dye different fabrics.
example 3
[0040] Textile ink compositions prepared according to example 1 were spotted onto a silk charmeuse fabric and allowed to dry. The washfastness was tested using the AATCC Washfast Test Method 61-2003 described above, and the fabric colors prior to and after the wash test were analyzed qualitatively (results not shown). The ink compositions were shown to dye silk fabric equally well.
[0041] From the above examples, it can be seen that the applicant has utilized commercially available metal oxide oligomers and commercially available dyes to develop durable and washfast textile ink compositions that work equally well on silk, cotton and polyester fabrics.
[0042] In addition to being able to durably dye more than one type of fabric, the ink compositions of the present invention are able to incorporate more dye than many other inks, are soluble and are therefore readily incorporated into inkjet inks, and do not have lightfast issues that are associated with other inks.
PUM
Property | Measurement | Unit |
---|---|---|
Viscosity | aaaaa | aaaaa |
Ratio | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com