Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

162 results about "Particle method" patented technology

The particle method is simply simulates fluids. There are various traditional methods, such as the finite difference method, the finite element method, the boundary element method etc. These methods have achieved outstanding success. However, there are still a lot of phenomena that are very difficult to simulate with the traditional methods.

Topological optimization method based on meshfree RKPM (reproducing kernel particle method) for thermal structure of anisotropic material

The invention discloses a topological optimization method based on a meshfree RKPM (reproducing kernel particle method) for a thermal structure of an anisotropic material. The method comprises a step of establishing a meshfree RKPM thermal stiffness matrix of the structure of the anisotropic material with a transformation matrix method, and the step comprises the following sub-steps: (1) solving dynamic influence domain radius of each calculation point according to coordinate information of input nodes and Gaussian points; (2) solving relative density of each RKPM node according to an RAMP (rational approximation of material properties) material interpolation model; (3) searching Gaussian points in a design domain, and establishing thermal conductivity tensor of each node according to the thermal conductivity of the anisotropic material, an orthotropic factor and a material direction angle; (4) taking a dot product of a thermal conductivity coefficient matrix and a geometric matrix of each node as an RKPM thermal stiffness matrix of the node; (5) forming the integral RKPM thermal stiffness matrix in the design domain. According to the method, topological optimization of the thermal structure of the anisotropic material is performed on the basis of the meshfree RKPM, the transformation matrix method and the RAMP material interpolation model, and the numerical stability is high.
Owner:XIANGTAN UNIV

Particle computer dynamic simulation method for 3D garment

The invention discloses a particle computer dynamic simulation method for a 3D garment, which realizes a fast and robust physical simulation effect through applying a hierarchical modeling and particle simulation method to a physical model of clothing and a human body. The method mainly comprises the steps of parameterized human body modeling, building a particle human model, building a hierarchical clothing model, and performing particle-based fast collision detection algorithm. The particle computer dynamic simulation method for the 3D garment provided by the invention improves on the basis of a position based simulation method, proposes to use a mesh reconstruction technology, standardizes the clothing mesh own form, and increases the robustness of a computing process; particles of different sizes and collision properties are used to realize a fast and robust discrete time point collision detection and processing method; a multi-level particle method is used, and a method of refining a surface and densely paving particles is introduced to prevent a phenomenon of passing through, thus a simulation effect of multi-layer clothing can be realized more truly; and a constraint solving method with priority is used, and the simulation effect can be realized by using fewer iterations.
Owner:NANJING UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products