Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Stent for neutron capture therapy and method of manufacture therefor

a neutron capture and neutron technology, applied in the field of intravascular neutron capture therapy, can solve the problems of clogging the vessel, inaccurate dose distribution, and several problems common to all devices for this type of intravascular, and achieve the effect of large capture cross-section and easy repeatability

Inactive Publication Date: 2006-08-10
ABBOTT LAB VASCULAR ENTERPRISE
View PDF18 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0016] These and other objects are accomplished by providing a stent having a stable target nuclide with a large capture cross-section for thermal neutrons. This nuclide is preferably incorporated as an alloy in the stent. When there is a clinical need for neutron capture therapy, the stent is irradiated with thermal neutrons, thereby giving rise to ionization radiation around the stent device. Concentration of target nuclide and thermal neutron flux determines dose rate around the stent. Since radiation is applied by an external source, it can be delivered at any time after placement of the stent and easily may be repeated.

Problems solved by technology

One drawback associated with previously known stents is the restenosis effect, i.e., the epithelial cells of the vessel walls adjacent to the ends of the stent and surrounding the stent may experience excess growth of cells, thereby clogging the vessel.
Several problems are common to all devices for this type of intravascular brachytherapy.
Dimensions are small, and misplacement of the radiation source by as little as a few millimeters can give rise to a very inaccurate dose distribution.
Furthermore, working with radioactive sources in a catheterization laboratory is problematic, as a new catheterization has to be performed, thereby adding risk to the patient and costs to the treatment.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Stent for neutron capture therapy and method of manufacture therefor
  • Stent for neutron capture therapy and method of manufacture therefor
  • Stent for neutron capture therapy and method of manufacture therefor

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0023] The present invention provides a stent comprising a stable nuclide element that may be externally activated by thermal neutrons, thereby providing localized neutron capture therapy in the vicinity of the vessel around the stent. Since radiation is applied by an external source, therapy may be delivered at any time after placement of the stent and easily may be repeated. Furthermore, unlike other known radiation techniques, the present invention ensures that neutron capture therapy is only provided to patients where radiation exposure is expected to provide therapeutic benefit.

[0024] In accordance with the principles of the present invention, a stent is constructed including a material having a high neutron capture cross-section, for example, greater than 103 barns, and that provides a high quality of radiation emission. As will of course be apparent, the irradiation dose provided by the stent after irradiation by an external source also depends upon the amount of stable nucl...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

Improved method and apparatus for neutron capture therapy are disclosed, which may beneficially be used to counteract restenosis. An improved stent and a method for manufacturing the stent are also presented. The stent comprises a stable nuclide having a large neutron capture cross-section. When a clinical need exists for radiation therapy, the stent is irradiated with thermal neutrons, thereby giving rise to radiation in the proximity of the stent to a therapeutic benefit. Since radiation is applied by an external source, it can be delivered at any time after placement of the stent and easily can be repeated. The stent only contains stable nuclides and therefore can be handled without the precautions needed when handling radioactive matter.

Description

FIELD OF THE INVENTION [0001] The present invention relates to intravascular neutron capture therapy. More particularly, the present invention provides methods and apparatus for making and using an implantable stent comprising a material capable of reducing restenosis, thereby improving long-term patency of the implanted stent. BACKGROUND OF THE INVENTION [0002] Over the past 20 years, the number of percutaneous coronary revascularization procedures has increased to more than one million per year. About 50% of these procedures include stent implantation. A stent is often designed as a thin metal wire mesh, which keeps a fabric in a desired shape, for instance forming a very thin tube providing an open channel for a fluid. FIG. 1 illustrates an example of such a stent, which is commercially available from JOMED AB, Helsingborg, Sweden. A polyfluorotetraethylene (“PFTE”) graft material integrated into the stent is used to seal off a perforated or ruptured artery wall. [0003] One drawb...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61F2/06A61F2/00A61F2/82A61K41/00A61N5/10G21G4/08
CPCA61F2/82A61F2210/0095G21G4/08A61N5/1002A61K41/009
Inventor LUNDQVIST, HANS
Owner ABBOTT LAB VASCULAR ENTERPRISE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products