Microwave-assisted synthesis of carbon and carbon-metal composites from lignin, tannin and asphalt derivatives and applications of same

a technology of carbon and metal composites, applied in the field of microwave-assisted synthesis of carbon and carbonmetal composites, can solve the problems of deviation from conventional heating sources as well as raw materials

Inactive Publication Date: 2010-02-11
THE BOARD OF TRUSTEES OF THE UNIV OF ARKANSAS
View PDF45 Cites 27 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0067]The process according to various embodiments of the present invention is quick and inexpensive in comparison to the known technologies. Moreover, it represents a deviation from conventional heating source as well as raw materials, many of which are non-renewable resource based. It also allows the formation of metal nanoparticles either pristine or on carbon support with high surface area. Additionally, the process simultaneously reduces metal ions during the process of carbonization and produces nanoparticles of both carbon and metal. The metal obtained may be a zero valent metal or one of the metal tertralides, pnictides, chalcogenides, borides or carbides depending on the reactants present during the synthetic process. The process also allows the formation of unique carbon nanostructures including nanodiamonds.

Problems solved by technology

Moreover, it represents a deviation from conventional heating source as well as raw materials, many of which are non-renewable resource based.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Microwave-assisted synthesis of carbon and carbon-metal composites from lignin, tannin and asphalt derivatives and applications of same
  • Microwave-assisted synthesis of carbon and carbon-metal composites from lignin, tannin and asphalt derivatives and applications of same
  • Microwave-assisted synthesis of carbon and carbon-metal composites from lignin, tannin and asphalt derivatives and applications of same

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0098]This example illustrates a method or process according to one embodiment of the present invention.

[0099]Referring now to FIG. 22, an exemplary process for synthesizing Ni—C nanocomposites is schematically shown according to one embodiment of the present invention. At first, a certain amount of lignosulfonate salt is converted to desired metal lignosulfonate salt prior to carbonization. At step 2201, a 10 g sample of calcium lignosulfonate, which has 5% Ca2+ (0.0125 mol Ca ions), is added to 70 mL of DI water in a container to form a solution. At step 2202, the solution is heated to a temperature range of about 85-90 degrees C. with stirring. At step 2203, a 0.0125 mol sample of nickel sulfate, NiSO4, is then added to the solution to form a reaction mixture. Note that in other embodiments, depending on what metal carbon nanoparticles is desired, other metal salts with metals such as Sb, Li, Rb, Ti, V, Mn, Fe, Co, Cu, Zn, Zr, Mo, Ru, Rh, Pd, Ag, W, Ir, Pt, Au or any mixture of t...

example 2

[0107]This example describes Ni2P nanoparticles that are synthesized according to one embodiment of the present invention utilizing the exemplary process set forth in EXAMPLE 1, or a process similar to it.

[0108]An XRD of the sample prepared shown in FIG. 2 indicates that pure Ni2P is produced. There is an exact match with Ni2P standard file with no other impurities.

[0109]FIG. 3 shows an SEM image of the sample, which shows that the morphology of the sample is in the form of nanospheres, with an average nanosphere size of <100 nm. The fold seen in the middle of the image is likely due to a tape that is used to support the sample.

[0110]There is also evidence of nanosticks but there is strong reason to believe that they are also in fact Ni2P. Liu et. al.4 have observed the formation of such nanosticks projecting from nanospheres in the sample of Ni2P they prepared in an aqueous environment. They propose that aggregated nanoparticles form nanospheres after which the sticks decorate them...

example 3

[0111]This example describes Ni2P nanoparticles that are synthesized according to one embodiment of the present invention utilizing the exemplary process set forth in EXAMPLE 1, or a process similar to it. In this example, however, Ni2P nanoparticles are synthesized on a silica support.

[0112]FIG. 4 shows an XRD of Ni2P prepared in the presence of silica. It can be seen that all the peaks expected from Ni2P are present in the sample. In addition, the characteristic peaks for carbon and silica are also present, respectively. No other peaks are discernable indicating that SiO2 remains unaffected under the reaction conditions.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
frequencyaaaaaaaaaa
diametersaaaaaaaaaa
diametersaaaaaaaaaa
Login to view more

Abstract

A plurality of carbon-metal nanocomposites. In one embodiment, the plurality of carbon-metal nanocomposites includes a plurality of carbons with a molecular structure that shows a first peak in the range of 1585 to 1565 cm−1 in a corresponding Raman spectrum, and a second peak in the range of 1325 to 1355 cm−1 in the corresponding Raman spectrum, wherein the first peak represents carbons with a graphitic nature and the second peak represents nanodiamonds, and wherein the plurality of carbon-metal nanocomposites is made from a metal derivative or metal chelated derivative of a carbon-containing precursor in solid form that is subjected to microwave radiation at a frequency in the range of 900 MHz to 5.8 GHz, for a period of time effective to allow the plurality of carbon-metal nanocomposites to be formed.

Description

CROSS-REFERENCE TO RELATED PATENT APPLICATION[0001]This application claims priority to and the benefit of, pursuant to 35 U.S.C. §119(e), U.S. provisional patent application Ser. No. 61 / 132,380, filed Jun. 18, 2008, entitled “MICROWAVE-ASSISTED SYNTHESIS OF CARBON AND CARBON-METAL COMPOSITES FROM LIGNIN, TANNIN AND ASPHALT DERIVATIVES,” by Tito Viswanathan, the content of which is incorporated herein in its entirety by reference.[0002]Some references, which may include patents, patent applications and various publications, are cited and discussed in the description of this invention. The citation and / or discussion of such references is provided merely to clarify the description of the present invention and is not an admission that any such reference is “prior art” to the invention described herein. All references cited and discussed in this specification are incorporated herein by reference in their entireties and to the same extent as if each reference was individually incorporated...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): H01B1/04B01J21/18H01F1/04C10M103/02
CPCY10S977/773Y10S977/788C22C32/0084C01B31/02C22C1/1026C01B25/08C01B32/05
Inventor VISWANATHAN, TITO
Owner THE BOARD OF TRUSTEES OF THE UNIV OF ARKANSAS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products