Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

195 results about "Lignin degradation" patented technology

Lignin is a recalcitrant biopolymer, meaning that it resists degradation. Recalcitrance is manifested in resistance to acid- and base-catalyzed hydrolysis. In contrast, other biopolymers - proteins, DNA, and even cellulose - degrade when treated with aqueous acids or bases.

Technology for extracting bran dietary fibers by combining ultrasonic-assisted enzymolysis and microbial fermentation

The invention discloses a technology for extracting bran dietary fibers by combining ultrasonic-assisted enzymolysis and microbial fermentation. The gloss of a dietary fiber product is ivory, the function index of the dietary fiber product is far higher than the standard of dietary fibers commonly used in the western countries, and the dietary fiber product can serve as high-quality dietary fibers and an ideal food additive. The technology has the advantages that the dietary fibers in bran are extracted through the technology of combining ultrasonic-assisted enzymolysis protein starch removal, microbial fermentation and ultrasonic-assisted enzymolysis, the product yield and the function are obviously improved; the bran dietary fibers obtained after ultrasonic-assisted enzymolysis and microbial fermentation are carried out and the lignin degradation rate reach 70% or higher, part of thallus dietary fibers are included, and the nutrient value of the bran dietary fibers is obviously improved; the production cost of the technology is low, industrialization production is facilitated, and a set of bran dietary fiber developing and utilizing approach which is high in efficiency, low in cost, safe and feasible is established.
Owner:HENAN KUANGHUA FOOD CO LTD

Use of polymers in dishwashing compositions for the removal of grease and oil from plastic dishware, and dishwashing compositions

A method of making a dishwashing cleaning composition is disclosed. The method includes: providing ingredients for a dishwashing cleaning composition; providing a polymer selected from the group of: at least one first monomer and at least one second monomer, the first monomer being selected from the group of acrylate, substituted acrylate, maleate, or substituted maleate, and the second monomer being selected from styrene or substituted styrene, wherein the weight ratio of the first monomer to the second monomer is from 80:20 to 20:80; polyvinyl pyrrolidone; polyvinyl pyridine N-oxide; lignin-sulphonate; polyethylene-imine alkoxylates; and mixtures thereof; and combining the ingredients and the polymer to form a dishwashing cleaning composition that is capable of removing grease and oil from plastic dishware. In addition, a dishwashing cleaning composition is disclosed that comprises from 0.0001% to 5% by weight of the composition of a copolymer containing at least one first monomer and at least one second monomer, the first monomer being selected from the group of acrylate, substituted acrylate, maleate, or substituted maleate, and the second monomer being selected from styrene or substituted styrene, wherein the weight ratio of the first monomer to the second monomer is from 80:20 to 20:80, and from 10% to 60% by weight of the composition of a surfactant system, the surfactant system containing at least 0.5% by weight of the composition of an amine oxide. A kit including a container and the dishwashing composition, and a process of cleaning dishware using the dishwashing cleaning composition are also disclosed.
Owner:THE PROCTER & GAMBLE COMPANY

Shaped nanoporous bodies

A range of carbon materials can be produced using lignin in combination with synthetic phenolic resins or naturally occurring lingo-cellulosic materials. The lignin, which is essentially a naturally occurring phenolic resin, has a carbon yield on pyrolysis similar to that of the synthetic resins, which aids processing. The lignin can be used as a binder phase for synthetic resin or lignocellulosic materials allowing the production of monolithic carbons from a wide range of precursors, as the primary structural material where the thermal processing is modified by the addition of small quantities of synthetic resin materials or as structure modified in the production of meso/macro porous carbons in either bead, granular or monolithic form. A carbonised monolith is provided comprising mesoporous and/or macroporous carbon particles dispersed in a matrix of microporous carbon particles with voids between the particles defining paths for fluid to flow into and through the structure. The monolith may take the form of a shaped body having walls defining a multiplicity of internal transport channels for fluid flow, the transport channels being directed along the extrusion direction. The monolith may be made by carbonising a shaped phenolic body based on phenolic resin precursors. In a method for producing such a carbonisable shaped resin body solid particles of a first phenolic resin are provided which is partially cured so that the particles are sinterable but do not melt on carbonisation. The particles of the first phenolic resin are mixed with particles of a second phenolic resin that has a greater degree of cure than said first phenolic resin and has a mesoporous and/or macroporous microstructure that is preserved on carbonisation. The resulting mixture is formed into a dough e.g. by mixing the resin particles with methyl cellulose, PEO and water, after which the dough is extruded to form a shaped product and stabilising in its shape by sintering.
Owner:NEOTERYX
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products