Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

97 results about "Pyridine-N-oxide" patented technology

Pyridine-N-oxide is the heterocyclic compound with the formula C₅H₅NO. This colourless, hygroscopic solid is the product of the oxidation of pyridine. It was originally prepared using peroxyacids as the oxidising agent. The molecule is planar. The compound is used infrequently as an oxidizing reagent in organic synthesis. It also serves as a ligand in coordination chemistry.

Composition and use

The present invention relates to a composition comprising: (i) an anti-microbial agent comprising a polymeric biguanide, alone or in combination with at least one other microbiologically active component selected from the group consisting of quaternary ammonium compounds, monoquaternary heterocyclic amine salts, urea derivatives, amino compounds, imidazole derivatives, nitrile compounds, tin compounds or complexes, isothiazolin-3-ones, thiazole derivatives, nitro compounds, iodine compounds, aldehyde release agents, thiones, triazine derivatives, oxazolidine and derivatives thereof, furan and derivatives thereof, carboxylic acids and the salts and esters thereof, phenol and derivatives thereof, sulphone derivatives, imides, thioamides, 2-mercapto-pyridine-N-oxide, azole fungicides, strobilurins, amides, carbamates, pyridine derivatives, compounds with active halogen groups, and organometallic compounds; and (ii) an amphoteric co-polymer of the Formula (1): wherein:[A] is of Formula (9), [B] is of Formula (10), [C] is of Formula (12), [D] is of Formula (13), and X is of Formula (11), wherein [A], [B], [C] and [D] may occur in any order; T is an optionally substituted substituent; L, G and Z each independently is an optionally substituted linking group; R1, R2 and R3 are each independently H, optionally substituted C1-20-alkyl or optionally substituted C3-20-cycloalkyl; R4 and R5 are each independently H or C1-4-alkyl; q is 15 to 1000; p is 3 to 50; J is an optionally substituted hydrocarbyl group; F is an acidic substituent; E is a basic substituent; m is 0 to 350; n is 1 to 75; v is 0 to 100; y is 1 to 100; b is 0, 1 or 2; s is 0 or 1; w is 1 to 4; and provided that at least one of R4 and R5 is H.
Owner:ARCH UK BIOCIDES LTD

Processes and reagents for oligonucleotide synthesis and purification

The present invention relates to processes and reagents for oligonucleotide synthesis and purification. One aspect of the present invention relates to compounds useful for activating phosphoramidites in oligonucleotide synthesis. Another aspect of the present invention relates to a method of preparing oligonucleotides via the phosphoramidite method using an activator of the invention. Another aspect of the present invention relates to sulfur-transfer agents. In a preferred embodiment, the sulfur-transfer agent is a 3-amino-1,2,4-dithiazolidine-5-one. Another aspect of the present invention relates to a method of preparing a phosphorothioate by treating a phosphite with a sulfur-transfer reagent of the invention. In a preferred embodiment, the sulfur-transfer agent is a 3-amino-1,2,4-dithiazolidine-5-one. Another aspect of the present invention relates to compounds that scavenge acrylonitrile produced during the deprotection of phosphate groups bearing ethylnitrile protecting groups. In a preferred embodiment, the acrylonitrile scavenger is a polymer-bound thiol. Another aspect of the present invention relates to agents used to oxidize a phosphite to a phosphate. In a preferred embodiment, the oxidizing agent is sodium chlorite, chloroamine, or pyridine-N-oxide. Another aspect of the present invention relates to methods of purifying an oligonucleotide by annealing a first single-stranded oligonucleotide and second single-stranded oligonucleotide to form a double-stranded oligonucleotide; and subjecting the double-stranded oligonucleotide to chromatographic purification. In a preferred embodiment, the chromatographic purification is high-performance liquid chromatography.
Owner:ALNYLAM PHARM INC

Use of polymers in dishwashing compositions for the removal of grease and oil from plastic dishware, and dishwashing compositions

A method of making a dishwashing cleaning composition is disclosed. The method includes: providing ingredients for a dishwashing cleaning composition; providing a polymer selected from the group of: at least one first monomer and at least one second monomer, the first monomer being selected from the group of acrylate, substituted acrylate, maleate, or substituted maleate, and the second monomer being selected from styrene or substituted styrene, wherein the weight ratio of the first monomer to the second monomer is from 80:20 to 20:80; polyvinyl pyrrolidone; polyvinyl pyridine N-oxide; lignin-sulphonate; polyethylene-imine alkoxylates; and mixtures thereof; and combining the ingredients and the polymer to form a dishwashing cleaning composition that is capable of removing grease and oil from plastic dishware. In addition, a dishwashing cleaning composition is disclosed that comprises from 0.0001% to 5% by weight of the composition of a copolymer containing at least one first monomer and at least one second monomer, the first monomer being selected from the group of acrylate, substituted acrylate, maleate, or substituted maleate, and the second monomer being selected from styrene or substituted styrene, wherein the weight ratio of the first monomer to the second monomer is from 80:20 to 20:80, and from 10% to 60% by weight of the composition of a surfactant system, the surfactant system containing at least 0.5% by weight of the composition of an amine oxide. A kit including a container and the dishwashing composition, and a process of cleaning dishware using the dishwashing cleaning composition are also disclosed.
Owner:THE PROCTER & GAMBLE COMPANY

Orally active, antimalarial, anticancer, artemisinin-derived trioxane dimers with high selectively, stability and efficacy and methods of making the same

ActiveUS20060142377A1Easy to transformPotent and selective anticancer activityOrganic active ingredientsBiocideO-Phosphoric AcidCancer cell
In only two steps and in 65% overall yield, natural trioxane artemisinin (I) was converted on gram scale into C-10-carba trioxane dimer (3). This new, very stable dimer was then transformed easily in one additional step into four different dimers (4-7). Alcohol and diol dimers (4 and 5) and ketone dimer (7) are 10 times more antimalarially potent in vitro than artemisinin (1), and alcohol and diol dimers (4 and 5) are strongly inhibitory but not cytotoxic toward several human cancer cell lines. Water-soluble carboxylic acid derivatives (8a-10c and 12) were easily prepared from dimers (4-6); they are thermally stable even at 60° C. for 24 hours, are more orally efficacious as antimalarials than either artelinic acid or sodium artesunate, and have potent and selective anticancer activities. Further derivitization of the alcohol dimers (4 and 17), diol dimer (5) and ketone (7) has produced a number of analogs also antimalarially active in vitro at sub-nanomolar concentrations (most notably: pyridine N-oxides (13, 15, 18, 23, 24 and 25), phosphoric acid triesters (26 and 27), sulfonamide (40) and cyclic carbonate (41)). In addition, dimers (13 and 19) are more efficacious (when administered both orally and i.v.) and less toxic (when administered intraperitoneally to mice as a single dose) than clinically-used sodium artesunate, thereby giving them a better antimalarial therapeutic index than sodium artesunate.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Method for preparing high-nitrogen-content porous carbon material by utilizing biomass, product and application thereof

The invention discloses a method for preparing a high-nitrogen-content porous carbon material by utilizing biomass, a product and application thereof. The preparation process is as follows: pulverizing and drying the biomass, mixing the biomass and an activating agent uniformly, performing rapid pyrolysis on the mixture under the atmosphere of ammonia gas, and carrying out reaction between the activating agent and the biomass waste to etch a carbon skeleton to form a developed pore structure; meanwhile, a large amount of holes are formed, nitrogen atoms in the ammonia gas occupy the holes rapidly to form rich active nitrogen-containing functional groups (pyridine-N, pyrrole-N, quaternary-N and pyridine-N-oxide), so that a large amount of nitrogen elements are enriched in pyrolytic carbon;furthermore, the own action of the ammonia gas and the synergistic effect of the activating agent and the ammonia gas can promote formation of coke pores and nitrogen-containing functional groups, anda functional high-nitrogen-content porous carbon material with rich activated nitrogen-containing functional groups is finally formed and has wide application prospect in the fields of catalysts, adsorbents, electrode materials and the like, so that high-additional-value utilization of the biomass is realized.
Owner:HUAZHONG UNIV OF SCI & TECH

Orally active, antimalarial, anticancer, artemisinin-derived trioxane dimers

InactiveUS7417156B2Easy to transformPotent anticancer activityBiocideAnimal repellantsCancer cellPhosphoric acid
In only two steps and in 65% overall yield, natural trioxane artemisinin (I) was converted on gram scale into C-10-carba trioxane dimer (3). This new, very stable dimer was then transformed easily in one additional step into four different dimers (4-7). Alcohol and diol dimers (4 and 5) and ketone dimer (7) are 10 times more antimalarially potent in vitro than artemisinin (I), and alcohol and diol dimers (4 and 5) are strongly inhibitory but not cytotoxic toward several human cancer cell lines. Water-soluble carboxylic acid derivatives (8a-10c and 12) were easily prepared from dimers (4-6); they are thermally stable even at 60° C. for 24 hours, are more orally efficacious as antimalarials than either artelinic acid or sodium artesunate, and have potent and selective anticancer activities. Further derivitization of the alcohol dimers (4 and 17), diol dimer (5) and ketone (7) has produced a number of analogs also antimalarially active in vitro at sub-nanomolar concentrations (most notably: pyridine N-oxides (13, 15, 18, 23, 24 and 25), phosphoric acid triesters (26 and 27), sulfonamide (40) and cyclic carbonate (41)). In addition, dimers (13 and 19) are more efficacious (when administered both orally and i.v.) and less toxic (when administered intraperitoneally to mice as a single dose) than clinically-used sodium artesunate, thereby giving them a better antimalarial therapeutic index than sodium artesunate.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Use of polymers in dishwashing compositions for the removal of grease and oil from plastic dishware, and dishwashing compositions

The present invention relates to the use of a copolymer comprising at least one first monomer and at least one second monomer, said first monomer being selected from the group of acrylate, substituted acrylate, maleate, or substituted maleate, and said second monomer being selected from styrene or substituted styrene, wherein the weight ratio of said first monomer to said second monomer is from 80:20 to 20:80; polyvinyl pyrrolidone; polyvinyl pyridine N-oxide; lignin-sulphonate; polyethylene-imine alkoxylates; and mixtures thereof; in dishwashing cleaning compositions for the removal of grease and oil from plastic dishware. The present invention also relates to a dishwashing cleaning composition, comprising from 0.0001% to 5% by weight of the composition of a copolymer comprising at least one first monomer and at least one second monomer, said first monomer being selected from the group of acrylate, substituted acrylate, maleate, or substituted maleate, and said second monomer being selected from styrene or substituted styrene, wherein the weight ratio of said first monomer to said second monomer is from 80:20 to 20:80, and from 10% to 60% by weight of the composition of a surfactant system, the surfactant system comprising at least 0.5% by weight of the composition of an amine oxide. The present invention also relates to a kit comprising a container and the dishwashing composition, and to a process of cleaning dishware using the dishwashing cleaning composition.
Owner:THE PROCTER & GAMBLE COMPANY

Method for synthetizing medical intermediate heterocyclic group pyridine N-oxide

The invention relates to a method for synthetizing medical intermediate heterocyclic group pyridine N-oxide of the following chemical formula (II). The method comprises the steps that in an inert gas atmosphere, compound of the formula (I) and tetrahydrofuran are added to a reaction still, then catalyst, alkali, oxidizing agents and addition agents are sequentially added into the reaction still, stirring is carried out to warming up to 80-100 DEG C to carry out reaction for 8-10 hours, the chemicals are cooled down to room temperature after reaction, a saturated salt solution is added to the chemicals, extraction is carried out for three times through diethyl ether, organic phases are combined, anhydrous magnesium sulfate is adopted for drying, vacuum concentration is carried out, and column purification is carried out to obtain the compound of the chemical formula (II) (please see the specification), wherein R is selected from H, halogen, C1-C6 alkyl groups and phenyl groups with or without substituent groups. According to the method, target products can be obtained in high yield through appropriate selection and combination of the catalyst, the alkali, the addition agents and the oxidizing agents, and the method has wide application prospects and industrialized potential productivity in the technical field of medical intermediate synthetic technology and the field of organic chemical synthesis.
Owner:福建未来药业有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products