Treatment of acute exacerbation of asthma and reduction of likelihood of hospitalization of patients suffering therefrom

a technology for asthma and acute exacerbation, which is applied in the direction of biocide, heterocyclic compound active ingredients, drug compositions, etc., can solve the problems of provoking unwanted cardiovascular side effects, too risky, and not producing significant clinical benefits, so as to reduce the likelihood of hospitalization, improve breathing ability, and reduce the hospitalization rate

Inactive Publication Date: 2011-05-19
MEDICINOVA INC
View PDF3 Cites 1 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0012]In another aspect, the present invention provides a method of treating AEA by administering an effective amount of the Active Agent to a patient in need of such treatment wherein the AEA or one or more manifestations of the AEA are non-responsive or substantially non-responsive to treatment with SOC. In another aspect, the present invention provides a method of treating a severe and long-lasting episode of asthma by administering an effective amount of the Active Agent to a patient in need of such treatment, wherein the severe and long-lasting episode of asthma or one or more manifestations of it are non-responsive or substantially non-responsive to treatment with SOC. Within the aspects and embodiments of the present invention, in one embodiment, the Active Agent administered is MN-221 or pharmaceutically acceptable salts thereof. For example and without limitation, patients suffering from AEA (for example, those admitted to an emergency room because of an acute exacerbation of asthma), who were not responsive to SOC, were treated with MN-221 (in addition to having been treated with SOC) and their treatment outcomes compared with those of similar patients treated with SOC only (or SOC plus a placebo). The hospitalization rate among those patients who were treated with SOC only, was 54 percent (7 of 13, roughly half), compared to a hospitalization rate of 25 percent (4 of 16, roughly a quarter) among those patients who were treated with MN-221 and with SOC, demonstrating improved breathing ability (see, FIG. 1) and about a 50 percent reduction in hospitalization rate among AEA patients who were also treated with MN-221. Thus, the invention also provides novel methods of reducing the likelihood of hospitalization of patients suffering from AEA, who are non-responsive to SOC. In one embodiment of the invention, the likelihood of hospitalization of a patient suffering from an acute exacerbation of asthma treated with MN-221 alone or in combination with SOC falls to substantially less than half or fifty percent, preferably, to about a quarter (or twenty-five percent) of all patients suffering from an acute respiratory attack.

Problems solved by technology

Moreover, these treatments may not produce a significant clinical benefit and / or may provoke unwanted cardiovascular side-effects (e.g., tachycardia) when added to SOC.
Thorax (1988) 43:19-23) to provide some breathing benefit without undue side effects, such parenteral beta-agonist therapy has proven over the years to be too risky—especially from a cardiovascular liability standpoint—for limited observed benefit.
(2005) 6:142-7 showed that terbutaline added to SOC in children with status asthmaticus did not provide a significant improvement in clinical asthma score or ICU stay.
Moreover, the clinical benefit appears questionable, while the potential clinical risks are obvious.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Treatment of acute exacerbation of asthma and reduction of likelihood of hospitalization of patients suffering therefrom
  • Treatment of acute exacerbation of asthma and reduction of likelihood of hospitalization of patients suffering therefrom
  • Treatment of acute exacerbation of asthma and reduction of likelihood of hospitalization of patients suffering therefrom

Examples

Experimental program
Comparison scheme
Effect test

example 1

Safety and Efficacy of In Vivo Administration of MN-221

[0082]In preclinical studies, intravenously administered MN-221 (0.04 to 0.4 mg / kg) at the peak of ragweed-induced bronchoconstriction demonstrated a statistically significant, and near maximal reversal of bronchoconstriction in ragweed sensitized dogs between 0.75 and 6.7 min (p<0.001 up to 4.5 min and p<0.01 up to 6.7 min) after dosing.

[0083]In a separate study with telemetered dogs at the Lovelace Respiratory Research Institute, the effect of i.v. MN-221 administration in addition to nebulized albuterol was performed to assess cardiovascular changes and safety of the combination therapy. Albuterol was administered by inhalation at 5 or 10 ug / kg and MN-221 was intravenously administered over 15 min at 0.3, 3, or 30 ug / kg. As expected with beta-agonists and as shown in other model systems, both albuterol and MN-221, alone, increased heart rate to a modest level depending on dose. No adverse changes in MAP or QTc were observed w...

example 2

Administration of MN-221 for the Treatment of AEA

[0084]MN-221 was tested at escalating doses of 240 μg to 1,080 μg in patients with AEA treated in emergency departments (EDs). The study included 29 (13 treated with SOC only and 16 treated with MN-221 in combination with SOC) patients with severe AEA. All patients were administered SOC treatment as follows: supplemental oxygen given to maintain oxygen saturation measured by pulse oximetry of ≧90%; two doses of inhaled beta2-agonist (in this study, albuterol 5 mg) via nebulizer given approximately every 20 minutes; simultaneously with two doses of an inhaled anti-cholinergic agent (in this study, ipratropium 0.5 mg) via nebulizer given approximately every 20 minutes; one dose of corticosteroid given orally (in this study, prednisone 60 mg) or intravenously (in this study, methylprednisolone 125 mg), and intravenous magnesium sulfate (2 gm, diluted with 50-100 mL normal saline) and given over 10 minutes to patients with an FEV1 ≦25% of...

example 3

Demonstration of Safety and Efficacy of MN-221 Administration to AEA Patients

[0088]A randomized, double-blind, placebo-controlled Phase II clinical trial is performed for demonstrating the efficacy and safety of administering MN-221 in accordance with the various aspects and embodiments of the methods of the present invention. A patient is administered the following initial SOC treatment regimen (consistent with the National Asthma Education and Prevention Program and the Global Initiative for Asthma (GINA) guidelines). The SOC includes the following: supplemental oxygen given to maintain oxygen saturation as measured by pulse oximetry of ≧90% as needed; albuterol: 10 mg of albuterol via nebulizer prior to the qualifying spirometry evaluation; simultaneously with ipratropium: 1.0 mg of ipratropium via nebulizer prior to the qualifying spirometry evaluation (if a nebulizer is not used, albuterol and ipratropium may be administered using an MDI with spacer as follows; albuterol: 16 pu...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
timeaaaaaaaaaa
total volumeaaaaaaaaaa
total volumeaaaaaaaaaa
Login to view more

Abstract

The invention provides a method of improving one or more clinical outcomes of an individual experiencing an acute respiratory attack. The acute respiratory attack may include acute reversible bronchospasm, severe acute bronchospasm, or acute exacerbation of asthma. The method includes administering to an individual suffering from an acute respiratory attack an effective amount of bedoradrine or a pharmaceutically acceptable salt thereof in combination with a standard of care (SOC) treatment regimen.

Description

CROSS-REFERENCE TO RELATED PATENT APPLICATIONS[0001]This application claims priority from U.S. Provisional Application Nos. 61 / 262,352 and 61 / 392,917, filed Nov. 18, 2009 and Oct. 13, 2010, respectively, and incorporated herein by reference in their entirety.FIELD OF THE INVENTION[0002]This invention relates to a method of treating severe episodes of asthma, preventing the manifestations of severe and long-lasting episodes of asthma from worsening, and reducing the likelihood of hospitalization (or other adverse clinical outcomes) of patients suffering from severe and long-lasting episodes of asthma, including without limitation, acute exacerbation of asthma. In particular, this therapeutic approach with MN-221 (generic name: bedoradrine) provides additional bronchodilation and improved clinical outcomes including reduced hospitalization when used adjunctively to (that is, in combination with) recognized standard respiratory care for acute asthma exacerbations (i.e., nebulized albut...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A61K31/165A61K31/56A61K33/06A61K31/24A61K31/44A61K31/46A61K31/573A61P11/00A61P11/08
CPCA61K31/165A61K31/24A61K31/44A61K31/46A61K31/56A61K31/138A61K33/06A61K45/06A61K31/573A61K2300/00A61P11/00A61P11/06A61P11/08A61P11/16A61P43/00
Inventor MATSUDA, KAZUKOIWAKI, YUICHIJOHNSON, KIRK W.
Owner MEDICINOVA INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products