Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Methods, Systems and Devices for Non-Invasive Open Ventilation For Providing Ventilation Support

a technology of nasal interface and non-invasive ventilation, which is applied in the direction of mechanical equipment, valves, operating means/releasing devices, etc., can solve the problems of inability to provide patient comfort, nasal interfaces may generate undesirable noise, and performance may degrade, so as to reduce the work of breathing, increase airway pressure, and increase lung volume

Active Publication Date: 2013-10-03
BREATHE TECHNOLOGIES INC
View PDF10 Cites 5 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

This patent describes a method for providing respiratory support using a non-invasive ventilation system. The system includes a ventilator, a gas delivery circuit, a jet nozzle, and a sensor. The method involves measuring spontaneous respiration and then activating the ventilator to supply ventilation gas in synchrony with the breathing phases. The gas andentained ambient air elevate lung pressure, volume, decrease work of breathing, or increase airway pressure. The system can adjust the supply of ventilation gas based on patient needs, detecting speaking or apnea / hypopnea. The nozzle is placed in close proximity to the nostril and may be flush with or outside the outer tube. The portable gas supply can be adjusted based on information from the sensor. The technical effect of this patent is a safer and effective method for delivering respiratory support to patients with various respiratory illnesses.

Problems solved by technology

If there is some misalignment, performance may degrade.
Also, the gas flow profile may become more organized before entering the patient's nostril, rather than a turbulent jet entering the nostril, which would be quite uncomfortable and intolerant to the patient.
Typically the nozzle may be centered with respect to the manifold internal geometry at the location of the nozzle; however, it can also be off-center, for example, in situations in which minimal sound generation is desired.
Unfortunately, without the embodiments described above, the nasal interfaces may generate an undesirable amount of noise because of the jet pump principle.
Jet pumps are known to create noise from the gas velocity exiting the jet nozzle, and the surrounding air being entrained by the jet.
This may increase the differential pressure available for the sense port.
The increase in tidal volume is considered clinically efficacious, however is technically challenging to achieve in an open ventilation, non-invasive and minimally obtrusive system.
In the oxygen therapy walk (top graph), the patient fatigues early and has to stop to rest, because the amount of energy the patient has to expend to breathe to overcome their reduced lung function, is just too difficult.
Typically, the heart rate and blood pressure are extremely elevated in addition to being fatigued, and the CO2 level is high because the patient cannot get enough air in and out, again, because of how much energy is required to breathe.
In the example shown, during the period of partial or complete obstruction, the flow signal at the nares is not strong enough for the breathing sensors to detect respiration.
Since the mask is a completely open mask, this is possible, whereas this is not possible with conventional CPAP and BiPAP sleep apnea masks and breathing circuits.
This is difficult and ill advised with conventional PAP therapy in which the patient breathes the significant majority of gas through the mask and hose, in which case it is best to always have the ventilation gas being delivered to the patient to prevent CO2 retention in the hose, mask and airways due to rebreathing.
However, the movement of air in the trachea in response to the breath effort in some cases, depending on the sensor technology being used, may be enough to register as an inspiratory effort and expiratory effort by the sensor.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Methods, Systems and Devices for Non-Invasive Open Ventilation For Providing Ventilation Support
  • Methods, Systems and Devices for Non-Invasive Open Ventilation For Providing Ventilation Support
  • Methods, Systems and Devices for Non-Invasive Open Ventilation For Providing Ventilation Support

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0189]FIG. 1 is a schematic diagram showing an exemplary overall system 101 of an embodiment of the invention. A patient may be ventilated with non-invasive open ventilation (NIOV) using a ventilation gas delivery circuit 103, an airway pressure sensing line 104, and non-invasive open nasal interface (nasal interface) 105. The nasal interface 105 preferably does not seal against the patient's nose such as is typical with other ventilation interfaces, and rather leaves the nose open for the user to breathe normally and freely from the ambient surroundings. Ventilation gas 107 delivered from a ventilator 109 may travel through the gas delivery circuit 103 and out one or more gas exit ports 111 in the nasal interface 105. The ventilation gas 107 may exit at a speed that entrains ambient air 113, such that the combination of ventilation gas 107, entrained ambient air 113 and spontaneously inhaled air 115, if the patient is spontaneously breathing, is delivered to the patient's airways, ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A system for providing ventilation support to a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle at the distal end of the gas delivery circuit; and at least one spontaneous respiration sensor for detecting respiration in communication with the control unit. The system may be open to ambient. The control unit may receive signals from the at least one spontaneous respiration sensor and determine gas delivery requirements. The ventilator may deliver gas at a velocity to entrain ambient air and increase lung volume or lung pressure above spontaneously breathing levels to assist in work of breathing, and deliver ventilation gas in a cyclical delivery pattern synchronized with a spontaneous breathing pattern.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS[0001]This application claims the benefit of U.S. Provisional Patent Application No. 61 / 166,150, filed Apr. 2, 2009, U.S. Provisional Patent Application No. 61 / 239,728, filed Sep. 3, 2009, and U.S. Provisional Patent Application No. 61 / 255,760, filed Oct. 28, 2009, and U.S. Provisional Patent Application No. 61 / 294,363, filed Jan. 12, 2010; the contents of which are incorporated by reference herein in their entireties.FIELD OF THE INVENTION[0002]The present invention relates to the field of ventilation therapy for persons suffering from respiratory and breathing disorders, such as respiratory insufficiency and sleep apnea. More specifically, the present invention relates to methods and apparatus for non-invasive open nasal interfaces.BACKGROUND OF INVENTION[0003]There are a range of clinical syndromes that require some form of ventilation therapy. These syndromes may include hypoxemia, various forms of respiratory insufficiency and airway disor...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61M16/00
CPCA61M16/0666A61M16/0683A61M16/16A61M16/208A61M2016/0021A61M2016/0024A61M16/127A61M2205/8206A61M16/0677A61M16/0688A61M16/0858A61M16/101A61M2205/17A61M16/0006A61M16/107A61M2016/0661A61M2205/0205A61M16/0825A61M16/0605A61M16/0841A61M16/0493A61M16/201A61M2202/0208A61M2202/03A61M2202/0007A61M16/0066A61M2016/0027A61M2016/0036A61M16/0003A61M16/0069A61M16/0622A61M16/0096A61M16/0875A61M2016/0015A61M2205/3334A61M16/0883A61M16/0057A61M2230/40
Inventor KAPUST, GREGORYCIPOLLONE, JOSEPHWONDKA, ANTHONY D.GERBER, ANTHONYALLUM, TODDEGHBAL, DARIUSAGUIRRE, JOEYKASSANIS, GEORGE A.
Owner BREATHE TECHNOLOGIES INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products