Dynamic random access memory device with the combined open/folded bit-line pair arrangement

Inactive Publication Date: 2000-12-19
KK TOSHIBA
View PDF4 Cites 15 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

It is therefore an object of the present invention to provide a new and imp

Problems solved by technology

As memory devices require higher packing density (integration density), higher speed, and lower dissipation, the sense amplifiers become critical.
A conflicting problem may exist in the two types of bit-line systems: While the open bit-line system is advantageous in the achievement of higher integration density of the memory cells, it suffers from the difficulty in designing sense-amplifier circuits to meet a strict circuit-design rule, which may results in that the positioning or distributing the sense amplifiers is difficult in a limited surface area of the substrate.
Such a sense-amplifier layout requirement makes it difficult to arrange a number of sense amplifier circuits on the chip substrate as a whole.
However, even such a bit-line system w

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Example

Regarding the "cell distribution" ratio in this embodiment, it is the same as that in the first embodiment as shown in FIG. 1: the ratio of the number of memory cells versus the total number of word / bit cross-points is 2 / 3, which is greater than "1 / 2" which is to be obtained in the case of the conventional DRAMs of the full-folded bit-line type, while it is obviously less than "1" (to obtained in the case of the prior-art DRAMs of full-open bit-line type).

Regarding the sense-amplifier layout pitch, each sense amplifier circuit is allowed to be mounted in an increased substrate-surface area that corresponds to the width of three adjacent bit lines (BL0-BL2). Such three-to-one sense-amplifier distribution feature can relax the circuit design rule on the chip substrate of limited size.

Accordingly, the embodiment of FIG. 8 can solve the three major problems in the prior art DRAM devices: the "increased cell-size" problem in the conventional folded bit-line system, the "decreased sense-a...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A dynamic random access memory device includes a semiconductor substrate, a plurality of parallel word lines on the substrate, and a plurality of pairs of bit lines transverse to the word lines on the substrate. An array of one-transistor memory cells are selectively arranged at the cross points as defined between the word lines and the bit lines. The array is subdivided into a plurality of subarray sections. A sense amplifier section is connected to the bit lines. The sense amplifier section includes first and second sense amplifier circuits. Adjacent bit-line pairs of the bit lines include a first bit-line pair and a second bit-line pair, one of which has a folded bit-line arrangement being included in a certain subarray section to be connected to the first sense amplifier circuit, and the other of which has an open bit-line arrangement that extends into the subarray section and another subarray section adjacent thereto, and is connected to the second sense amplifier circuit.

Description

BACKGROUND OF THE INVENTION1. Field of the InventionThe present invention relates in general to semiconductor memory devices and in more particular to dynamic random-access memory (DRAM) devices of the type employing an array of one-transistor memory cells. The invention also relates to an improved sense amplifier circuitry for a MOS memory device.2. Description of the Related ArtRecently, MOS dynamic random access memory (DRAM) devices are becoming more widely used in the manufacture of digital equipment, particularly small-size computers, as the speed and cost advantages of these devices increase. As semiconductor technology is advanced, the devices are increasing in integration density due to remarkable improvements in the memory cell structure and in the micro-fabrication techniques. As memory devices require higher packing density (integration density), higher speed, and lower dissipation, the sense amplifiers become critical.Some prior DRAM devices employ what is called the "o...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): G11C7/00G11C7/18G11C11/4097G11C11/409H01L27/108G11C11/401H01L21/8242H01L27/10
CPCG11C7/18H01L27/10805G11C11/4097H10B12/30
Inventor TAKASHIMA, DAISABUROWATANABE, SHIGEYOSHI
Owner KK TOSHIBA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products