Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Flame-retardant thermoset composition, method, and article

Inactive Publication Date: 2005-04-07
SABIC INNOVATIVE PLASTICS IP BV
View PDF47 Cites 24 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, the halogenated aromatic compounds interfere with the recycling of electronic devices, and concerns have been raised about health effects associated with antimony oxides.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Flame-retardant thermoset composition, method, and article
  • Flame-retardant thermoset composition, method, and article
  • Flame-retardant thermoset composition, method, and article

Examples

Experimental program
Comparison scheme
Effect test

examples 1 and 2

, COMPARATIVE EXAMPLES 1-3

Several compositions were prepared and molded using the components and amounts summarized in Table 1, where all amounts are expressed as parts by weight (pbw). A methacrylate-capped poly(2,6-dimethyl-1,4-phenylene ether) resin (“Methacrylate-capped PPE”) having an intrinsic viscosity of about 0.3 deciliters per gram was prepared according to procedures described in U.S. Patent Application Publication No. 2001 / 0053820 A1 to Yeager et al. Fused silicas were obtained from Denka as FB-74 having an average particle size of 30.4 micrometers and a surface area of 1.6 meter2 / gram, and FS-20 having an average particle size of 5.0 micrometers and a surface area of 6.7 meter2 / gram. Hexanediol diacrylate was obtained from Sartomer as SR238. Trimethylolpropane trimethacrylate (TMPTMA) was obtained from Sartomer as SR350. Methacryloxypropyl trimethoxysilane (MAPTMS) was obtained from Dow Corning as Z-6030. A conductive carbon black was obtained as Printex XE-2 from Degu...

examples 3-11

A composition was prepared and molded according to the procedure described above. Cyclohexanedimethanol diacrylate was obtained from Sartomer as CD 406. A partially calcium saponified glycolic ester of montanic acid (montan wax) in a micronized form was obtained as CERIDUST® 5551 from Clariant. A fused silica having a median particle size of 17.7 micrometers and a surface area of 3.1 meter2 / gram was obtained as FB-570 from Denka. Another fused silica having a median particle size of 0.7 micrometers and a surface area of 6.2 meter2 / gram was obtained as SFP-30M from Denka. A colorant blend consisted of 57 parts of red colorant obtained as SANDOPLAST® Red G and 43 parts of green colorant obtained as SANDOPLAST® Green GSB, both from Clariant. Compositions are summarized in Table 2. Spiral flow length was determined using a spiral flow mold with a channel depth of 0.762 millimeters and a Gluco molding machine. Conditions used for the measurements were: platen temperature, 165° C.; mold ...

examples 12-17

, COMPARATIVE EXAMPLES 4-6

Seven compositions varying primarily in flame retardant type and amount were compounded, molded, and tested for flammability according to Underwriter's Laboratory procedure UL94. All samples contained silica, a colorant (carbon black or Keystone Green dye), a mold release agent (LICOWAX® S or LICOWAX® OP from Clariant), a flame retardant (melamine polyphosphate obtained from Ciba as MELAPUR® 200, aluminum tris(diethyl phosphinate) obtained from Clariant as OP930, or Clariant OP1311, which is believed to be a 9:1 weight / weight mixture of aluminum tris(diethyl phosphinate) and melamine polyphosphate), an initiator (dicumyl peroxide or t-butylperoxy benzoate), t-butylcatechol inhibitor, an acryloyl monomer (ethoxylated bisphenol A dimethacrylate obtained from Sartomer as SR348; 4-biphenyl methacrylate, CAS Reg. No. 46904-74-9, obtained from Hampford Research; or 4,4′-biphenol dimethacrylate, CAS Reg. No. 13082-48-9, prepared according to Liu et al., Polymer P...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
particle sizeaaaaaaaaaa
particle sizeaaaaaaaaaa
particle sizeaaaaaaaaaa
Login to View More

Abstract

A curable composition includes a functionalized poly(arylene ether) resin, an acryloyl monomer, and a phosphorus flame retardant. The composition exhibits an improved balance of properties such as toughness, flame retardance, heat-resistance, and moisture resistance. It is useful, for example, as an encapsulant for semiconductor products.

Description

BACKGROUND OF THE INVENTION Curable compositions are often used to encapsulate electronic components. These encapsulating materials must be self-extinguishing in the case of ignition. Commercially available compositions for encapsulation typically employ a combination of halogenated aromatic compounds and antimony oxides to achieve flame retardance. However, the halogenated aromatic compounds interfere with the recycling of electronic devices, and concerns have been raised about health effects associated with antimony oxides. There is therefore a need for flame-retardant encapsulant compositions that reduce or eliminate halogenated aromatic compounds and antimony oxides while maintaining or improving the balance of toughness, heat resistance, and moisture resistance. BRIEF DESCRIPTION OF THE INVENTION One embodiment is a curable composition, comprising: a functionalized poly(arylene ether) resin; an acryloyl monomer; and a phosphorus flame retardant having the formula wherein Md...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): C08F283/08C08F290/06C08G65/48C08K5/5313C08L51/08
CPCC08F283/08C08F290/062C08G65/48C08G65/485C08K5/5313C08L2201/02C08L51/08C08L71/126
Inventor CAMPBELL, JOHN ROBERTDUFFEY, BRYANRUDE, JOHN AUSTINSUSARLA, PRAMEELAVALLANCE, MICHAEL ALANYEAGER, GARY WILLIAMSZARNOCH, KENNETH PAUL
Owner SABIC INNOVATIVE PLASTICS IP BV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products