Silicone-based enteric CT contrast material

Inactive Publication Date: 2016-07-07
RGT UNIV OF CALIFORNIA
View PDF1 Cites 6 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0017]The present invention solves these and other existing problems by providing safe and effective formulations containing silicone-polymer based compounds as enteric CT (or DECT) contrast materials suitable for human use. In an exemplary embodiment, the silicone polymer is an oil (or other water-immiscible liquid) and the formulation is an oil-in-water type emulsion. In various embodiments, the present invention provides the benefits of both “positive” and “negative” enteric contrast with CT without the pitfalls of either type of enteric contrast medium. Benefits of “positive” enteric contrast include: superior identification of enteric leaks, detection of extralumenal collections such as abscesses, detection of abdominopelvic tumors and masses, evaluation of intestinal transit time, identification of bowel obstruction transition points, superior evaluation for bowel wall thickening. Pitfalls of “positive” enteric contrast include: toxicity of iodinated or barium

Problems solved by technology

Pitfalls of “positive” enteric contrast include: toxicity of iodinated or barium contrast material (see below), or when concurrent intravascular contrast material is given, obscuration of critically important findings for bowel mural ischemia or bowel inflammation, obscuration of abdomenopelvic vasculature, prevent

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Silicone-based enteric CT contrast material
  • Silicone-based enteric CT contrast material
  • Silicone-based enteric CT contrast material

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0186](Method 1) One percent of surfactant Tween 20 (Sigma-Aldrich) aqueous solution was prepared by dissolving 50 mg of Tween-20 in 4.95 g of distilled water. To this clear solution (in a 50-ml centrifuge tube) was added dropwise 15.0 g of silicon-based polymer (50 cSt@ 25° C., Fisher Scientific) during moderate vortexing, through a 20-ml syringe attached with a 23G needle. After completion of the addition, the mixture was vigorously vortexed at room temperature for 3 minutes, giving a 75 wt % oil-in-water (o / w) type emulsion with 0.25wt % of Tween 20 surfactant (Note: tiny air bubbles are not avoidable in non-vacuum preparation conditions). This emulsion was measured to give the average particle size as 60 microns on a Malvern 3000 ZetaSizer. The emulsion can be stably stored at room temperature without phase separation for at least 3 months. CT scan proved its homogeneity (except the existence of tiny air bubbles).

[0187](Method 2) One percent of surfactant Tween-20 (Sigma-Aldrich...

example 2

[0190]The procedure of Example 1 was followed using Triton X-100.

example 3

[0191]The procedure of Example 1 was followed using Triton X-100 and a fluorinated silicon-based polymer FS-1265 (viscosity 350 cSt, Dow Corning).

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The present invention provides a silicon-based polymer contrast media for use in CT imaging. In an exemplary embodiment, the invention provides an enteric contrast medium formulation. An exemplary formulation comprises, (a) an enteric contrast medium comprising silicon-based polymer oil emulsified in water. Exemplary silicon-based polymer oil has a viscosity between about 50 eSt and 100,000 eSt. In various embodiments, the silicon-based polymer oil is emulsified with a vehicle or dispersing medium compatible with enteric administration of the formulation to a subject in need of such administration. In an exemplary embodiment, the contrast material is incorporated into a pharmaceutically acceptable vehicle in which the material is emulsified in the presence of a surfactant. In an exemplary embodiment, the silicon-based polymer comprises 30% or more of the weight of the contrast material formulation.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS[0001]This application claims, under 35 USC 119(e), the benefit of U.S. Provisional Application No. 61 / 866,806 filed Aug. 16, 2013, which is incorporated herein by reference in its entirety for all purposes.BACKGROUND OF THE INVENTION[0002]Computed tomography (CT) currently outperforms all other diagnostic tests for the evaluation of many common clinical scenarios, including urgent trauma triage, the evaluation of abdominal pain, and the evaluation for inflammatory or ischemic bowel. The development of contrast material for CT imaging revolutionized medical imaging, particularly in the abdomen and pelvis where visceral organs show intertwined anatomy. Despite the proven value of contrast materials for CT, no substantially improved clinical agent has been introduced in the past 20 years. All commercial CT contrast materials are based on iodine (intravascular or enteric) or barium (enteric only).[0003]A fundamental limitation of current clinical ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): A61K49/04
CPCA61K49/04A61K49/0409A61B6/481A61B6/482
Inventor YEH, BENJAMIN M.FU, YANJUN
Owner RGT UNIV OF CALIFORNIA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products