Preparation method of GaN-based semiconductor used for LED

A gallium nitride-based semiconductor technology, applied in the field of gallium nitride-based semiconductor preparation, can solve problems such as poor anti-static breakdown capability, reduced diode performance, and reduced internal quantum efficiency, so as to reduce internal leakage and improve reverse performance. Voltage, effect of reducing operating speed

Active Publication Date: 2017-04-26
SHENZHEN LEPOWER CO LTD
View PDF5 Cites 1 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0007] In the traditional gallium nitride-based diode epitaxial wafer structure, the dislocation throughout the entire P-N junction is one of the main factors causing the performance degradation of the diode. Such dislocations will cause a decrease in internal quantum efficiency, reverse leakage, antistatic Poor breakdown ability

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0035] h 2Purify the substrate at high temperature in the environment; H at 1000°C 2 Under the atmosphere, feed 100L / min of H 2 , keep the reaction chamber pressure at 100mbar, and process the substrate for 8min.

[0036] The epitaxial wafer includes a multi-quantum well layer in which a low-temperature buffer layer, a U-type gallium nitride GaN layer, an N-type GaN layer, a barrier layer / well layer / supplementary layer / slope well layer structure are sequentially formed from bottom to top on the substrate , functional layer, light emitting layer and P-type GaN layer.

[0037] Using the chemical vapor deposition method of metal organic compounds, at 550 ° C, the pressure of the reaction chamber is maintained at 300 mbar, and the flow rate of NH is 10000 sccm 3 , 50sccm TMGa, 100L / min H 2 1. Growing a low-temperature buffer layer GaN with a thickness of 20 nm on the substrate.

[0038] Grow a U-type GaN layer in the low-temperature buffer layer GaN: first grow a 2D-type GaN ...

Embodiment 2

[0048] h 2 Purify the substrate at high temperature in the environment; H at 1050°C 2 Under the atmosphere, feed 120L / min of H 2 , keep the reaction chamber pressure at 200mbar, and process the substrate for 9 minutes.

[0049] The epitaxial wafer includes a multi-quantum well layer in which a low-temperature buffer layer, a U-type gallium nitride GaN layer, an N-type GaN layer, a barrier layer / well layer / supplementary layer / slope well layer structure are sequentially formed from bottom to top on the substrate , functional layer, light emitting layer and P-type GaN layer.

[0050] Using the chemical vapor deposition method of metal organic compounds, at 570 ° C, the pressure of the reaction chamber is maintained at 450 mbar, and the flow rate of NH is 15000 sccm 3 , 75sccm TMGa, 120L / min H 2 1. Growing a low-temperature buffer layer GaN with a thickness of 20nm-40nm on the substrate.

[0051] Grow a U-type GaN layer in the low-temperature buffer layer GaN: first grow a 2D...

Embodiment 3

[0061] h 2 Purify the substrate at high temperature in the environment; H at 1100°C 2 Under the atmosphere, feed 130L / min of H 2 , keep the reaction chamber pressure at 300mbar, and process the substrate for 10min.

[0062] The epitaxial wafer includes a multi-quantum well layer in which a low-temperature buffer layer, a U-type gallium nitride GaN layer, an N-type GaN layer, a barrier layer / well layer / supplementary layer / slope well layer structure are sequentially formed from bottom to top on the substrate , functional layer, light emitting layer and P-type GaN layer.

[0063] Using the chemical vapor deposition method of metal organic compounds, at 580 ° C, the pressure of the reaction chamber is maintained at 600 mbar, and the flow rate of NH is 20000 sccm 3 , 100sccm TMGa, 130L / min H 2 1. Growing a low-temperature buffer layer GaN with a thickness of 40 nm on the substrate.

[0064] Grow a U-type GaN layer in the low-temperature buffer layer GaN: first grow a 2D-type G...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention discloses a preparation method of a GaN-based semiconductor used for an LED. The preparation method comprises steps that growth quality of a quantum well is improved by additionally providing a supplement layer, and reverse voltage is improved, and internal electric leakage of a device is reduced, and at the same time, by using a tilted well layer having gradually-changed In components, the band gap of the well is changed, and therefore more electrons and holes are captured, contact areas between the electrons and the holes are increased, the operation speed of the electrons is reduced, the number of the electrons effectively contacted with the holes is increased, and the luminous efficiency of the LED is improved.

Description

[0001] Technical field [0002] The invention relates to a method for preparing an LED, in particular to a method for preparing a gallium nitride-based semiconductor used in an LED. Background technique [0003] In recent years, light-emitting diode (Light Emitting Diode, LED) lighting technology, known as "green lighting", has developed rapidly. Compared with traditional lighting sources, white light-emitting diodes not only have low power consumption, long service life, small size, environmental protection, but also have the advantages of good modulation performance and high response sensitivity. On the one hand, white light-emitting diodes have the characteristics of high emission power and safety to human eyes; on the other hand, they have the advantages of fast response, good modulation, no electromagnetic interference, and no need to apply for radio spectrum. [0004] The core part of the light-emitting diode is a chip composed of a P-type semiconductor and an N-type se...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(China)
IPC IPC(8): H01L33/00H01L33/06H01L33/32B82Y30/00
CPCB82Y30/00H01L33/0075H01L33/06H01L33/325
Inventor 梁沛明
Owner SHENZHEN LEPOWER CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products