High-strength heat-resistant magnesium alloy containing Ag and preparation method thereof
A magnesium alloy and high-strength technology, which is applied in the field of high-strength heat-resistant magnesium alloy and its preparation, can solve the problems of reducing alloy plasticity and difficulty in meeting the needs of precision manufacturing, and achieve high-temperature performance improvement, age hardening effect and heat resistance. Effects that are easy to engineer and apply
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
preparation example Construction
[0050] The present invention also provides a method for preparing an Ag-containing high-strength heat-resistant magnesium alloy, comprising the following steps:
[0051] A) batching pure Mg, pure Ag, Mg-Zr master alloy and Mg-RE master alloy according to the following mass fractions, melting and casting;
[0052] RE = Y, Nd and Gd;
[0053] Y: 4.5~6.5wt%, Nd: 1.5~4.0wt%, Gd: 1.5~4.0wt%, Ag: 0.1~1.5wt%, Zr: 0.15~1.5wt%, the balance is Mg, of which the total amount of rare earth elements Not more than 10wt%;
[0054] B) heat-treating or extruding the casting to obtain a high-strength heat-resistant magnesium alloy containing Ag.
[0055]In the present invention, the pure Mg, the pure Ag, the Mg-Zr master alloy and the Mg-RE master alloy are preferably proportioned and then dried, the drying temperature is 100-200°C, and the drying time is 1-2 hours;
[0056] (2) Put the dried pure Mg, pure Ag, and Mg-RE master alloy into the crucible and raise the temperature with the furnace...
Embodiment 1
[0076] The high-strength heat-resistant magnesium alloy in this embodiment is composed of the following components in mass percentage: Y: 4.5wt%, Nd: 1.5wt%, Gd: 1.5wt%, Ag: 0.1wt%, Zr: 0.5wt%, and the balance is Mg and unavoidable impurities.
[0077] The casting molding preparation of the high-strength heat-resistant magnesium alloy of this embodiment comprises the following steps:
[0078] (1) The raw materials pure Mg, pure Ag, Mg-Zr master alloy, and Mg-RE (20wt.%) master alloy are prepared according to the proportion, and then dried. The drying temperature is 200° C., and the drying time is 2 hours.
[0079] (2) During the preparation process, the melt has been in CO 2 and SF 6 Under the protection of mixed gas, CO 2 with SF 6 The ratio is 99.5:0.5.
[0080] (3) Put the dried pure Mg, pure Ag, and Mg-RE (20wt.%) master alloy into a crucible and heat up with the furnace until it is completely melted, and the temperature is controlled at 780°C.
[0081] (4) Cool the ...
Embodiment 2
[0087] The difference between Example 2 and Example 1 is that the high-strength heat-resistant magnesium alloy consists of the following components by mass percentage: Y: 6.5wt%, Nd: 1.5wt%, Gd: 1.5wt%, Ag: 0.5wt%, Zr: 0.5wt%, the balance is Mg and unavoidable impurities.
[0088] Solution treatment: heat-treat the casting at 510°C for 12h, then air-cool to room temperature. Aging treatment: heat-treat the casting at 225°C for 48 hours, then air-cool to room temperature.
PUM
Property | Measurement | Unit |
---|---|---|
yield strength | aaaaa | aaaaa |
tensile strength | aaaaa | aaaaa |
yield strength | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com