Thermal barrier composition
a technology of thermal barrier and composition, which is applied in the direction of ceramic layered products, transportation and packaging, coatings, etc., can solve the problems of piping used in various manufacturing facilities to be subjected to temperatures in excess of 400.degree.
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Examples
example 1
[0012] 1. Formulation
1 wt % Component 6.79 Poly(methylsilsesquioxane) 10.50 Titanium isopropoxide 4.19 Polydiethoxysiloxane 21.00 Silanol-terminated polydimethylsiloxane (4200 g / mol) 7.35 Titanium diisopropoxide (Bis-2,4-pentanedionate) 4.19 Polydiethoxysiloxane 31.49 Mica 325 mesh 13.48 Heucophos ZPO (zinc organophosphate) Corrosion Protection 1.50 Heucorin RZ (zinc salt) Corrosion Protection
[0013] 2. Manufacturing Steps
[0014] The first step is to dissolve the polymethysilsesquioxane (POSS) into the titanium isopropoxide (TIPO). This is accomplished by mixing the POSS into the titanium isopropoxide and heating at 100.degree. C. for 24 hours.
[0015] The second step is to terminate the silanol groups on the ends of the polydimethylsiloxane. This is accomplished by mixing the silanol terminated polydimethylsiloxane with the titanium diisopropoxide (bis-2,4-pentanedionate) and allowing the mixture to crosslink for 1 hour. If this step is not performed, the silanol groups on the polymer ...
example 2
[0017] Formulation
2 wt % Component 24.07 Polysilsesquioxane dissolved in titanium isopropoxide and 20% polydiethoxysiloxane 5.42 Epoxy-functionalized polydimethylsiloxane 0.61 Aminopropyltriethoxy silane 16.05 Milled glass fiber 10.57 Hollow glass microspheres 1.20 Dibutyl tin dilaurate 40.12 Isopropyl alcohol 1.78 Titanium dioxide 0.18 Carbon Black
[0018] The formulation was manufactured using the same steps as Example 1 except that the POSS did not have to be pre-reacted with the TIPO. The formulation of Example 2 was used in various tests as described below and in Table 1.
3TABLE 1 Property Approach Test Method Standard Results Flexure Mechanically flex a coated titanium Apply coating to 6-inch titanium ASTM- 6 of 10 strips experienced cracking strip until the coating cracks or strips. Bend strips over rods of D6272 when bent over 1.50" rods. Only 4 delaminates increasing diameter until cracks modified of 10 strips experienced cracking appear. when bent over 1.25" rods. Conclusion:...
PUM
Property | Measurement | Unit |
---|---|---|
temperatures | aaaaa | aaaaa |
temperatures | aaaaa | aaaaa |
volume percent | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com