New salts of HMG-CoA reductase inhibitors

a reductase inhibitor and new salt technology, applied in the direction of crystallization separation, chemical treatment enzyme inactivation, separation process, etc., can solve the problems of not being economical in a large-scale production operation, and the preparation of lactone is one of the least economical steps in the production of hmg-coa reductase inhibitors, and achieves low cost and low toxicity.

Inactive Publication Date: 2005-03-03
LEK PHARMA D D
View PDF11 Cites 3 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

Furthermore, we surprisingly discovered that in processes for the biotechnological modification of HMG-CoA reductase inhibitors the formation of amine salts of HMG-CoA reductase inhibitors in the medium which derives from the fermentation liquor provides, in comparison with the mere metal salts as described in publicly accessible literature, an efficient means for the isolation and / or purification of HMG-CoA reductase inhibitors by means of simple crystallization. The amines which are described in the present specification and which readily form salts with HMG-CoA reductase inhibitors are thus particularly suitable as auxiliary materials or processing aids for the isolation and / or purification of HMG-CoA reductase inhibitors. Furthermore, they can be excellently used as starting materials or intermediates of semisynthetic preparation or biotechnological modification of HMG-CoA reductase inhibitors and, furthermore, for the conversion into pharmaceutically acceptable salts or into the lactone form of the respective HMG-CoA reductase inhibitors. Accordingly, the novel amine salts of HMG-CoA reductase inhibitors of the present invention are also highly valuable as such.
Advantageous examples of amines which form the salt with HMG-CoA reductase inhibitors are: (±)-1,2-dimethylpropylamine, 3-(2-aminoethylamino)-propylamine, n-butylamine, secondary butylamine, tertiary butylamine (TBA), dibutylamine, tertiary amylamine, cyclopentylamine, cyclohexylamine, cycloheptylamine, dicyclohexylamine (DCHA), N-methylcyclohexylamine, N,N′-diisopropylethylenediamine (DIPEDA), N,N′-diethylenediamine, N-methyl-1,3-propanediamine, N-methylethylenediamine, N,N,N′,N′-tetramethyl-1,2-diaminoethane, N,N,N′,N′-tetramethyl-1,4-diaminobutane, N,N,N′,N′-tetramethyl-1,6-diaminohexane, 1,2-dipiperidinethane, dipiperidinemethane, 2-amino-3,3-dimethylbutane, N,N-dimethylcyclohexylamine, neopentylamine, adamantylamine, N,N-diethylcyclohexylamine, N-isopropylcyclohexylamine, N-methyl-cyclohexylamine, cyclobutylamine and norborylamine. Preferably in terms of crystallization efficiency, combined with low toxicity and low costs, the amine is selected from the group consisting of n-butylamine, secondary butylamine, TBA, dibutylamine, tertiary amylamine, cyclohexylamine, DCHA, N-methylcyclohexylamine and DIPEDA. The amine may particularly be selected from the group consisting of TBA, DIPEDA, DCHA and N-methylcyclohexylamine.

Problems solved by technology

U.S. Pat. No. 4,346,227 discloses a process for the preparation of the sodium salt of pravastatin, wherein chromatographic techniques are also used but the final product is obtained only after lyophilization which is not an economical process in a large scale production operations.
The preparation of lactone is one of the least economical steps in the production of HMG-CoA reductase inhibitors since losses in the course of the conversion from the acid into the lactone form and optionally further into the salts are greater than 20%.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • New salts of HMG-CoA reductase inhibitors
  • New salts of HMG-CoA reductase inhibitors
  • New salts of HMG-CoA reductase inhibitors

Examples

Experimental program
Comparison scheme
Effect test

example 1

Preparation of Free Acid of Mevastatin and Conversion Thereof into Salt Thereof with Tertiary Butylamine (TBA)

Mevastatin (200 g) was suspended in 30% volume / volume (v / v) aqueous acetonitrile solution (2500 ml), 3 equivalents of triethylamine were added and the mixture was heated to 80° C. and stirred for 30 minutes. After the completed reaction, acetonitrile was evaporated, the remaining solution was acidified to pH 4 with phosphoric acid and extracted into ethyl acetate (2×1000 ml). The pooled extracts were dried by the addition of 30 g of sodium sulphate, the desiccant was filtered off and the solution was concentrated (950 ml). TBA (1.5 equivalents) was added to the solution and crystallization was carried out for 30 minutes at 8° C. The crystals formed were filtered and washed with ethyl acetate (2×100 ml) and subsequently dried at 40° C. for 15 hours. The crystals obtained (the TBA salts of mevastatin 215 g) were white in color with a HPLC purity of 96.8%. The yield of the hy...

example 2

Preparation of the Sodium Salt of Nevastatin from the TBA Salt of Mevastatin

The TBA salt of mevastatin (1 g), obtained by the process disclosed in example 1, was dissolved in 3 ml of ethanol (96% v / v) and sodium hydroxide (40 g / L of ethanol) was added. The resulting mixture was precipitated in the ethyl acetate (60 ml). After the crystallization (30 min) at 8° C. the crystals were filtered off, washed with ethyl acetate and dried. The product: crystals of the sodium salt of mevastatin (0.65 g) pale brown in color with a HPLC purity of 98%.

example 3

Isolation of the TBA Salts of Lovastatin from the Fermentation Broth

A fermentation broth (160 L) obtained by the fermentation with a microorganism Aspergillus terreus ATCC 20544 and having a lovastatin content of 1 g / L was transferred from the fermenter into the tank (400 L) and pH was adjusted to 10 with the addition of 1 M aqueous sodium hydroxide 10 minutes of vigorous stirring the pH of the broth was decreased to 9 by adding 1 M sulphuric acid solution and the biomass was filtered off. The filtrate obtained was acidified to a pH value of 6.5 with 1 M sulphuric acid solution and 160 L of ethyl acetate was added. The slurry was subsequently stirred for 20 minutes. The aqueous and ethyl acetate phases were separated by extraction centrifuge and the ethyl acetate extract was concentrated in a rotavapor to the volume of 14 L. The concentration of lovastatin in the form of free acid in concentrated ethyl acetate extract was 10.1 g / L. To the obtained lovastatin solution (HPLC purity ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Lovastatin, pravastatin, simvastatin, mevastatin, atorvastatin, and derivatives and analogs thereof are known as HMG-CoA reductase inhibitors and are used as antihypercholesterolemic agents. The majority of them are produced by fermentation using microorganisms of different species identified as species belonging to Aspergillus, Monascus, Nocardia, Amycolatopsis, Mucor or Penicillium genus, some are obtained by treating the fermentation products using the methods of chemical synthesis or they are the products of total chemical synthesis. The present invention relates to the new amine salts of HMG-CoA reductase inhibitors, the preparation thereof, the preparation of pure HMG-CoA reductase inhibitors via amine salts thereof, use of the amine salts of HMG-CoA reductase inhibitors in the process for semisynthetic preparation of HMG-CoA reductase inhibitors, use of the amine salts of HMG-CoA reductase inhibitors in the process for biotechnological modification of HMG-CoA reductase inhibitors as well as the conversion of the amine salts of HMG-CoA reductase inhibitors into the pharmaceutically acceptable salts of the HMG-CoA reductase inhibitors and the conversion of the amine salts of HMG-CoA reductase inhibitors into the HMG-CoA reductase inhibitors in the lactone form.

Description

TECHNICAL FIELD AND BACKGROUND ART Lovastatin, pravastatin, simvastatin, mevastatin, atorvastatin and derivatives and analogs thereof are examples of known as HMG-CoA reductase inhibitors which are used as antihypercholesterolemic agents. The majority of them are produced biotechnologically by fermentation using microorganisms of different species identified as species belonging to Aspergillus, Monascus, Nocardia, Amycolatopsis, Mucor or Penicillium genus, some are obtained by treating the fermentation products using the methods of chemical synthesis, thus leading to semi-synthetic substances, or they are the products of total chemical synthesis. The present invention relates to a new industrial process for isolation and / or purification of HMG-CoA reductase inhibitors via salts thereof with specific amines. The invention enables a user to obtain the pure amine salts of HMG-CoA reductase inhibitors from the fermentation broth in case the substances are produced by biotechnological ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): B01D9/00C07C69/00C07C13/00C12N9/99C07C69/013C07C69/28C07C69/30C07C211/07C07C211/09C07C211/10C07C211/14C07C211/35C07D309/30C12P13/00
CPCC07C211/07C07C211/09C07C211/10C07D309/30C07C211/35C07C2101/14C07C211/14C07C2601/14
Inventor PFLAUM, ZLATKO
Owner LEK PHARMA D D
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products