Tissue engineered meat for consumption and a method for producing tissue engineered meat for consumption
a technology of tissue engineered meat and production method, which is applied in the direction of biochemistry apparatus and processes, food preparation, on/in inorganic carriers, etc., can solve the problems of food contamination, high inefficiency of production method, and current meat production methods that are also harmful to the environmen
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example i
[0024] This example illustrates the isolation of pluri-potent mesenchymal stem cells for use in producing meat products in vitro. Mesenchymal stem cells give rise to muscle cells (myocytes), fat cells (adipocytes), bone cells (osteocytes), and cartilage cells (chrondocytes). Mesenchymal stem cells may be dissected and isolated from embryonic tissues of any non-human animal embryos. In cattle, for example, embryonic mesenchymal tissues that are rich in pluri-potent muscle stem cells are preferably isolated from embryos at day 30 to 40 or earlier. Once dissected, the embryonic tissues may be minced into small pieces about one millimeter by one millimeter in size in phosphate buffered saline (“PBS”) pH 7.45. Five to ten pieces of the minced tissue may be incubated in 300 μl of 0.25% trypsin and 0.1% EDTA in PBS for thirty minutes at 37° C. with gentle agitation. Afterwards, the tissues may be allowed to settle on the bottom of the tube by gravity or gentle centrifugation. The supernata...
example ii
[0026] After mesenchymal stem cells have been isolated, they may be enriched for myoblasts or muscle stem cells in culture. Initially, the cells may be differentially plated on different petri dishes after dissociation and washing as described in Example I. Using a 60 mm petri dish, the cells may first be incubated in complete medium for two to four hours. During this time, epithelial cells will tend to attach quickly to the petri dish while the myoblasts remain in the supernatant. The supernatant may then be collected and the myoblasts may be plated on a different petri dish coated with natural or synthetic biomaterials such as those mentioned in Example I. Myoblasts may be enriched by supplementing the growth media with growth factors such as skeletal muscle growth factor, prostaglandin F2α (“PGF2α”), and insulin-like growth factor I (“IGF-1”).
[0027] Further, myoblasts may be differentiated into specific myoctes or muscle cells by culturing the myoblasts in complete medium or in ...
example iii
[0028] Alternatively, myoblasts may be enriched from toti-potent embryonic stem cells. Toti-potent cells may be derived from in vitro fertilized eggs of an animal using in vitro fertilization techniques, from stem cells present in umbilical cords or placenta, or from Embryonic Stem (ES) cells isolated from cells at the blastocyst stage. ES cells, for example, may be collected, gently dissociated by trypsin, and cultured in vitro with recombinant leukemia inhibitory factor (Chemicon, San Diego, Calif.) and feeder cells such as growth arrested embryonic fibroblasts cells. These toti-potent cells may be treated with growth factors such as PGF2α or IGF-1 to induce the cells to differentiate into myoblasts.
PUM
Property | Measurement | Unit |
---|---|---|
size | aaaaa | aaaaa |
concentrations | aaaaa | aaaaa |
electric current | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com