Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

System and method for industrial process control

Inactive Publication Date: 2006-04-06
HAMIDPOUR RAFIE
View PDF17 Cites 19 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0013] The system and method for industrial process control is a superior system and method for controlling an industrial process. A microcontroller is mounted atop a printed circuit board optimally configured to minimize the system's footprint to conserve space. The system further incorporates a plurality of inputs and outputs a compact data entry device, a data viewing device, memory and communication capabilities and modular software. The software is modular in that the low level drivers that interface the hardware to the processor are written in machine language whereas the interface between the process and the operator is written in a high level language, such as C++, to facilitate and expedite reprogramming of the controller to revised parameters or even to a totally new application.
[0014] Industrial processes are becoming more complex requiring greater precision, regular quality improvements and less waste in order for the process owner to survive in the increasingly competitive global marketplace. Few industries can survive without automating their processes and minimizing the amount of human oversight because of the increasing portion of revenue that is consumed by personnel costs. Moreover, human oversight of industrial systems generally cannot compare with the quality provided by automated systems.
[0016] Programmable logic controllers are many times the preferred choice for process control. Programmable logic controllers; however, frequently lack sufficient capabilities to control a robust process with sophisticated oversight requirements unless additional input / output (I / O) control hardware and feedback capabilities are purchased thereby increasing the cost of process automation. Also, maintenance costs can increase substantially whenever a programmable logic controller system malfunction occurs because not only must the controller be checked for component failures, but the supplemental I / O hardware, transducers and devices being controlled must be either thoroughly examined, thereby incurring additional maintenance and downtime costs, or quickly replaced in order to bring the production line back to full capacity, thereby drastically increasing hardware costs.
[0018] The process control system of the present invention is compact and can readily be mounted in close proximity to the process being controlled and can also be mounted in a hardened enclosure to protect the componentry. The close proximity of the controller to the process being controlled gives the process operator an advantage when reprogramming process parameters. The operator can enter data using the data entry device such as a keypad and then view the data subsequent to entry to confirm its accuracy on the display device such as an LCD screen. Once the data is entered and confirmed by the operator, the production process can be initiated and viewed by the operator in close proximity to the process to witness the updated operation and confirm process operation is as desired.
[0019] The system and method for industrial process control utilizes modular software wherein the low level drivers that interface the system hardware to the processor are written in machine language. The software controlling the interface between the application itself and the user, however, is written in a higher level programming language. Additionally, the process control system will have predefined software interfaces with the display device and the data entry device also jointly referred to as the human machine interface. The predefined software interface is created with the development of a new status screen on the data display device. Display device screens are linked to predefined text and parameters that are to be displayed thereby greatly improving the functionality of the system in regards to updating process application parameters.
[0020] Process applications requiring robust closed loop control capabilities such as the ability to control servo motors will typically be unable to rely upon programmable logic controllers to accomplish the task without the addition of feedback capabilities that will increase the overall cost. A process controller relying upon a microcontroller and possessing the functionality outlined herein will be critical to the success of such an application and the system and method for industrial process control outlined herein will further improve overall production capabilities.

Problems solved by technology

Few industries can survive without automating their processes and minimizing the amount of human oversight because of the increasing portion of revenue that is consumed by personnel costs.
Moreover, human oversight of industrial systems generally cannot compare with the quality provided by automated systems.
Programmable logic controllers; however, frequently lack sufficient capabilities to control a robust process with sophisticated oversight requirements unless additional input / output (I / O) control hardware and feedback capabilities are purchased thereby increasing the cost of process automation.
Also, maintenance costs can increase substantially whenever a programmable logic controller system malfunction occurs because not only must the controller be checked for component failures, but the supplemental I / O hardware, transducers and devices being controlled must be either thoroughly examined, thereby incurring additional maintenance and downtime costs, or quickly replaced in order to bring the production line back to full capacity, thereby drastically increasing hardware costs.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • System and method for industrial process control
  • System and method for industrial process control
  • System and method for industrial process control

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

A. The Process Control System

[0033] In the following description, for purposes of explanation and not limitation, specific details are set forth, such as particular embodiments, examples, procedures, techniques, etc., in order to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced in other embodiments that depart from these specific details. For example, while the present invention is described in one non-limiting embodiment as applied to a screen printing application, the present invention may be used in numerous industrial process applications. The present invention relates to a system and method for industrial process control. Such process control systems provide substantial benefit for lowering production costs by improving product quality, reducing waste, increasing production and providing production data in an easy to monitor format.

[0034] Referring first to FIG. 1, one ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

This disclosure relates to a process control unit for controlling a process wherein the controller utilizes hardware and modular software to accomplish the control. The modular software for interfacing the process with the user allows the user to utilize predefined software interfaces with a human machine interface. A user need only define the text and parameters to be displayed and then map them to a specific element of the human machine interface therein expediting process parameter modification at a later time.

Description

FIELD OF THE INVENTION [0001] The present invention relates to the field of industrial process control. BACKGROUND OF THE INVENTION [0002] Modern process plants, designed for flexible production and to maximize recovery of energy and material, are becoming more complex. Advanced control can improve product yield; reduce energy consumption; increase capacity; improve product quality and consistency; reduce product giveaway; increase responsiveness; improve process safety and reduce environmental emissions. [0003] By implementing advanced control substantial reductions in operating costs can be obtained. These benefits are clearly enormous and are achieved by reducing process variability, hence allowing plants to be operated to their designed capacity. Process units are tightly coupled and the failure of one unit can seriously degrade overall productivity. This situation presents significant control problems. However, it is generally acknowledged that there is currently not one techni...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): G05B11/01G05B15/00
CPCG05B19/0426G05B2219/23261
Inventor HAMIDPOUR, RAFIE
Owner HAMIDPOUR RAFIE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products